35 resultados para Intercellular osmoregulation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

MasterFoods wetlands exhibit phytoplankton communities, yet no zooplankton to consume them. Macrophytes were planted to improve the water quality. However a lack of oxygen, methane production and highly soluble salts in the wetland water potentially disrupted osmoregulation mechanisms in both colonising zooplankton and submerged macrophytes, thereby inhibiting their survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For years researchers have exerted every effort to improve the influential roles of microRNA (miRNA) in regulating genes that direct mammalian cell development and function. In spite of numerous advancements, many facets of miRNA generation remain unresolved due to the perplexing regulatory networks. The biogenesis of miRNA, eminently endures as a mystery as no universal pathway defines or explicates the variegation in the rise of miRNAs. Early evidence in biogenesis ignited specific steps of being omitted or replaced that eventuate in the individual miRNAs of different mechanisms. Understanding the basic foundation concerning how miRNAs are generated and function will help with diagnostic tools and therapeutic strategies. This review encompasses the canonical and the non-canonical pathways involved in miRNA biogenesis, while elucidating how miRNAs regulate genes at the nuclear level and also the mechanism that lies behind circulating miRNAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The latex dilution reaction during the tapping flow course has been well documented and associated with the facilitation of tapping latex flow. However, its underlying mechanism has not experimentally examined. The latex total solid content, osmotic potential and phloem turgor pressure change during the tapping flow course were simultaneously measured to investigate the cause of water movement during the tapping flow course. It was found that there are three different stages for the laticifer water equilibrium during the tapping flow course. The tapping-induced rapid turgor pressure drop is the cause of the first stage water influx into laticifers, while osmoregulation prevails during water exchange in the second and third stages of tapping flow. Meanwhile, aquaporin expressions were, for the first time, investigated during the tapping flow course. The rapid transcript up-regulation of HbPIP1, HbPIP2;1 and HbPIP2;3 contributes to the latex dilution reaction. However, their activity gating cannot be ruled out. Ethrel stimulation can significantly dilute the corresponding latex fractions during the tapping flow course due to its up-regulations of HbPIP1, HbPIP2;1 and HbPIP2;3. Nevertheless, the latex dilution reaction pattern for the Ethrel treated trees did not change, except for a lower degree of dilution compared with the un-treated trees. All these results suggest that both phloem turgor pressure and aquaporins are involved in the latex dilution reaction during the tapping flow course.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Investigate associations of TV viewing time and accelerometry-derived sedentary time with inflammatory and endothelial function biomarkers in children.

METHODS: Cross-sectional analysis of 164 7-10-year-old children. TV viewing time was assessed by parental proxy report and total and patterns of sedentary time accumulation (e.g. prolonged bouts) were assessed by accelerometry. C-reactive protein (CRP), homeostasis model assessment of insulin resistance, interleukin-2, -6, -8, -10, tumour necrosis factor alpha, adiponectin, resistin, brain-derived neurotrophic factor, soluble intercellular and vascular adhesion molecule 1, plasminogen activator inhibitor 1 and soluble E-selectin were assessed. Generalised linear models assessed the associations of TV viewing and sedentary time with biomarkers, adjusting for sex, waist circumference, moderate- to vigorous-intensity physical activity and diet density.

RESULTS: Each additional h week(-1) of TV viewing was associated with 4.4% (95% CI: 2.1, 6.7) greater CRP and 0.6% (0.2, 1.0) greater sVCAM-1 in the fully adjusted model. The association between frequency and duration of 5-10 min bouts of sedentary time and CRP was positive after adjustment for sex and waist circumference but attenuated after adjustment for diet density.

CONCLUSIONS: This study suggests that TV viewing was unfavourably associated with several markers of inflammation and endothelial dysfunction. The detrimental association between 5 and 10 min bouts of sedentary time and CRP approached significance, suggesting that further research with a stronger study design (longitudinal and/or experimental) is needed to better understand how the accumulation of sedentary time early in life may influence short and longer term health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water deprivation of the Spinifex hopping mouse, Notomys alexis, induced a biphasic pattern of food intake with an initial hypophagia that was followed by an increased, and then sustained food intake. The mice lost approximately 20% of their body mass and there was a loss of white adipose tissue. Stomach ghrelin mRNA was significantly higher at day 2 of water deprivation but then returned to the same levels as water-replete (day 0) mice for the duration of the experiment. Plasma ghrelin was unaffected by water deprivation except at day 10 where it was significantly increased. Plasma leptin levels decreased at day 2 and day 5 of water deprivation, and then increased significantly by the end of the water deprivation period. Water deprivation caused a significant decrease in skeletal muscle leptin mRNA expression at days 2 and 5, but then it returned to day 0 levels by day 29. In the hypothalamus, water deprivation caused a significant up-regulation in both ghrelin and neuropeptide Y mRNA expression, respectively. In contrast, hypothalamic GHSR1a mRNA expression was significantly down-regulated. A significant increase in LepRb mRNA expression was observed at days 17 and 29 of water deprivation. This study demonstrated that the sustained food intake in N. alexis during water deprivation was uncoupled from peripheral appetite-regulating signals, and that the hypothalamus appears to play an important role in regulating food intake; this may contribute to the maintenance of fluid balance in the absence of free water.