35 resultados para Infrared emission spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Herein, a new graphene/Cu nanoparticle composite was prepared via the in situ reduction of GO in the presence of Cu nanoparticles which was then utilized as a sacrificing template for the formation of flexible and porous graphene capacitor electrodes by the dissolution of the intercalated Cu nanoparticle in a mixed solution of FeCl3 and HCl. The porous RGO electrode was characterized by atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The as-prepared graphene/Cu nanoparticle composite and the pure graphene film after removal of Cu nanoparticles possessed high conductivity of 3.1 × 103 S m-1 and 436 S m-1 respectively. The porous RGO can be used as the electrode for the fabrication of supercapacitors with high gravimetric specific capacitances up to 146 F g-1, good rate capability and satisfactory electrochemical stability. This environmentally friendly and efficient approach to fabricating porous graphene nanostructures could have enormous potential applications in the field of energy storage and nanotechnology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

3-(2-(2-Heptadec-8-enyl-4,5-dihydro-imidazol-1-yl)ethylcarbamoyl)acrylic acid (NIMA), 3-(diallyl-amino)-2-hydroxypropyl sulfonate (NDS), acrylamide (AM) and acrylic acid (AA) were successfully utilized to prepare novel acrylamide-based copolymers (named AM/AA/NIMA and AM/AA/NDS/NIMA) which were functionalized by a combination of imidazoline derivative and/or sulfonate via redox free-radical polymerization. The two copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR), viscosimetry, pyrene fluorescence probe, thermogravimetry (TG) and differential thermogravimetry (DTG). As expected, the polymers exhibited excellent thickening property, shear stability (viscosity retention rate 5.02% and 7.65% at 1000 s-1) and salt-tolerance (10:000 mg L-1 NaCl: viscosity retention rate up to 17.1% and 10.2%) in comparison with similar concentration partially hydrolyzed polyacrylamide (HPAM). The temperature resistance of the AM/AA/NDS/NIMA solution was also remarkably improved and the viscosity retention rate reached 54.8% under 110 °C. According to the core flooding tests, oil recovery could be enhanced by up to 15.46% by 2000 mg L-1 of the AM/AA/NDS/NIMA brine solution at 80 °C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel imidazoline-based sulfonate copolymers (noted PAMDSCM and PAMPSCM) were successfully prepared by copolymerization of acrylamide (AM), acrylic acid (AA), 1-acrylamido ethyl-2-oleic imidazoline (ACEIM) with the sodium salts of 3-(diallyl-amino)-2-hydroxypropyl (NDS) or 2-acrylamido-2-methylpropane sulfonic acid (AMPS), respectively. The copolymers were characterized by infrared (IR) spectroscopy, 1H nuclear magnetic resonance (1H NMR) spectroscopy, pyrene fluorescence probe spectroscopy, viscosimetry and thermogravimetry (TG). Both PAMDSCM and PAMPSCM copolymers had excellent high-temperature tolerance in comparison with the same concentration of HPAM, and the residual viscosities were 32.0 mPa s and 31.3 mPa s (viscosity retention rates were 38.8% and 37.1%) at 140 °C, respectively. The copolymers possessed superior long-term thermal stability and their residual viscosity rates were up to 81.8% and 63.8% (52.9 mPa s and 47.1 mPa s) lasting 1.5 hours at 100 °C and 170 s-1, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Capsular polypyrrole hollow nanofibers (PPy-HNFs) were fabricated via in situ polymerization of pyrrole on an organic-inorganic template, followed by acid etching. Their application in removing hexavalent chromium (Cr(vi)) from aqueous solution was then investigated. The morphologies of the capsular PPy-HNFs were studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which showed that the PPy-HNFs had a capsular structure in the walls of hollow nanofibers. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) data confirmed the adsorption of Cr on capsular PPy-HNFs. The adsorption capacity increased with reduced pH of the initial solution and the adsorption process can be described using the pseudo-second-order model. These capsular PPy-HNFs showed a high Cr(vi) adsorption capacity up to 839.3 mg g-1. This adsorption capacity was largely retained even after five adsorption/desorption cycles. Electrostatic attraction between Cr and PPy-HNFs was studied using a proposed adsorption mechanism. The capsular PPy-HNFs formed a flexible membrane, which allowed easy handling during application. This study has demonstrated the possibilities of using this capsular PPy-HNF membrane for heavy metal removal from aqueous solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chitosan is a natural and non-toxic polymer which can be used as a multifunctional, e.g. antimicrobial or anti-wrinkle, agent on cotton fabrics. However, due to the lack of strong bonding forces between two polysaccharides, chitosan coating on cotton has poor durability. To provide efficient and irreversible chitosan adsorption on cotton substrate, it is required to build appropriate binding sites and to activate the substrate material properly. For this purpose, plasma treatment can be a promising method as it can activate the surface of the cotton fabric and improve the adsorption of chemicals in a completely harmless procedure. In this study, we investigated the effect of atmospheric pressure plasma treatment on adsorption of chitosan onto the cotton fabric. The purpose of the study was to investigate to which extent adsorption of chitosan on cotton can be improved by helium plasma treatment. Fibre surface and adsorption of chitosan were characterized by X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared (FTIR) spectroscopy. Changes in hydrophobicity of fabric`s surface and fibre morphology were evaluated using contact angle method and scanning electron microscopy (SEM), respectively. The results from XPS showed an increase in the C=O bonds on cotton fabrics oxydised by helium plasma treatmnets, confirming the formation of aldehyde groups in cellulose. The characteristic absorbance band of chitosan, amide II (N-H bending vibration) showed an enlargement for all fabrics treated with helium and chitosan, as assesed by FTIR. The absorbance peaks of CH2 stretching vibrations, which confirm chitosan existence, were stronger for all treated fabrics compared to the untreated control. While the plasma only treated fabric surface was very hydrophilic, the surface became hydrophobic after chitosan coating.