94 resultados para Hot-rolled steel


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, kinetics of the static (SRX) and metadynamic recrystallization (MDRX) of AISI4135 steel was investigated using hot torsion tests. Continuous torsion tests were carried out to determine the critical strain for dynamic recrystallization (DRX). The times for 50% recrystallization of SRX and MDRX were determined, respectively, by means of interrupted torsion tests. Furthermore, austenite grain size (AGS) evolution due to recrystallization (RX) was measured by optical microscopy. With the help of the evolution model established, the AGS for hot bar rolling of AISI4135 steel was predicted numerically. The predicted AGS values were compared with the results using the other model available in the literature and experimental results to verify its validity. Then, numerical predictions depending on various process parameters such as interpass time, temperature, and roll speed were made to investigate the effect of these parameters on AGS distributions for square-diamond pass rolling. Such numerical results were found to be beneficial in understanding the effect of processing conditions on the microstructure evolution better and control the rolling processes more accurately.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to improve the understanding of the dynamic and post-dynamic recrystallization behaviours of AISI 304 austenitic stainless steel, a series of hot torsion test have been performed under a range of deformation conditions. The mechanical and microstructural features of dynamic recrystallization (DRX) were characterized to compare and contrast them with those of the post-dynamic recrystallization. A necklace type of dynamically recrystallized microstructure was observed during hot deformation at 900 °C and at a strain rate of 0.01 s−1. Following deformation, the dependency of time for 50% recrystallization, t50, changed from “strain dependent” to “strain independent” at a transition strain (ε*), which is significantly beyond the peak. This transition strain was clearly linked to the strain for 50% dynamic recrystallization during deformation. The interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been established. The results also showed an important role of grain growth on softening of deformed austenite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The postdeformation recrystallization behavior of a hot-deformed austenitic stainless steel was investigated based on the first part of this study, in which the microstructure development during hot deformation and, in particular, the evolution of dynamic recrystallization (DRX), was studied. The effect of different parameters such as strain, strain rate, and temperature were examined. The dependency of the time for 50 pct softening, t 50, changed from “strain dependent” to “strain independent” at a transition strain (ε*) that was in the steady-state area of the hot deformation flow curve. The fully recrystallized microstructure showed a similar transition in strain sensitivity. However, this occurred at stains greater than ε*. A mathematical model was developed to predict the transition strain under different deformation conditions. Microstructural measurements show that the transition strain corresponds to approximately 50 pct DRX in the deformed structure at the point of unloading.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hot deformation behavior of a 304 austenitic stainless steel was investigated to characterize the evolution of the dynamically recrystallized structure as a starting point for studies of the postdeformation  recrystallization behavior. The effect of different deformation parameters such as strain, strain rate, and temperature were investigated. The flow curves showed typical signs of dynamic recrystallization (DRX) over a wide range of temperatures and strain rates (i.e., different Zener–Hollomon (Z) values). However, under very high or very low Z values, the flow curves’ shapes changed toward those of the dynamic recovery and multiple peaks, respectively. The results showed that while DRX starts at a strain as low as 60 pct of the peak strain, a fully DRX microstructure needs a high strain of almost 4.5 times the initiation strain. The DRX average grain size showed power-law functions with both the Zener–Hollomon parameter and the peak stress, although power-law breakdown was observed at high Z values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free steel was investigated using hot torsion. Tests were performed at temperatures between 765 °C and 850 °C at strain rates between 0.003 s−1 and 1 s−1 for samples with grain sizes of 25 μm, 75 μm and 150 μm. The structures were observed using EBSD analysis and are consistent with those expected for materials dominated by dynamic recovery. Some evidence was found for small amounts of thermally induced migration of pre-existing boundary (bulging) and for the generation of new segments of high angle boundaries by continuous dynamic recrystallization. The early onset of a steady-state flow stress in the finer grained samples is attributed to one or a combination of thermally induced boundary migration and enhanced rates of recovery near subgrain (and grain) boundaries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The microstructure and crystallographic texture characteristics were studied in a 22Cr-6Ni-3Mo duplex stainless steel subjected to plastic deformation in torsion at a temperature of 1000 °C using a strain rate of 1 s−1. High-resolution EBSD was successfully used for precise phase and substructural characterization of this steel. The austenite/ferrite ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over large sample areas. The deformation mechanisms in each phase and the interrelationship between the two are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of crystallographic texture and deformation substructure was studied in a type 316L austenitic stainless steel, deformed in rolling at 900 °C to true strain levels of about 0.3 and 0.7. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were used in the investigation and a comparison of the substructural characteristics obtained by these techniques was made. At the lower strain level, the deformation substructure observed by EBSD appeared to be rather poorly developed. There was considerable evidence of a rotation of the pre-existing twin boundaries from their original orientation relationship, as well as the formation of highly distorted grain boundary regions. In TEM, at this strain level, the substructure was more clearly revealed, although it appeared rather inhomogeneously developed from grain to grain. The subgrains were frequently elongated and their boundaries often approximated to traces of {111} slip planes. The corresponding misorientations were small and largely displayed a non-cumulative character. At the larger strain, the substructure within most grains became well developed and the corresponding misorientations increased. This resulted in better detection of sub-boundaries by EBSD, although the percentage of indexing slightly decreased. TEM revealed splitting of some sub-boundaries to form fine microbands, as well as the localized formation of microshear bands. The substructural characteristics observed by EBSD, in particular at the larger strain, generally appeared to compare well with those obtained using TEM. With increased strain level, the mean subgrain size became finer, the corresponding mean misorientation angle increased and both these characteristics became less dependent on a particular grain orientation. The statistically representative data obtained will assist in the development of physically based models of microstructural evolution during thermomechanical processing of austenitic stainless steels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper focuses on the development of a hybrid phenomenological/inductive model to improve the current physical setup force model on a five stand industrial hot strip finishing mill. We approached the problem from two directions. In the first approach, the starting point was the output of the current setup force model. A feedforward multilayer perceptron (MLP) model was then used to estimate the true roll separating force using some other available variables as additional inputs to the model.

It was found that it is possible to significantly improve the estimation of a roll separating force from 5.3% error on average with the current setup model to 2.5% error on average with the hybrid model. The corresponding improvements for the first coils are from 7.5% with the current model to 3.8% with the hybrid model. This was achieved by inclusion, in addition to each stand's force from the current model, the contributions from setup forces from the other stands, as well as the contributions from a limited set of additional variables such as: a) aim width; b) setup thickness; c) setup temperature; and d) measured force from the previous coil.

In the second approach, we investigated the correlation between the large errors in the current model and input parameters of the model. The data set was split into two subsets, one representing the "normal" level of error between the current model and the measured force value, while the other set contained the coils with a "large" level of error. Additional set of data with changes in each coil's inputs from the previous coil's inputs was created to investigate the dependency on the previous coil.

The data sets were then analyzed using a C4.5 decision tree. The main findings were that the level of the speed vernier variable is highly correlated with the large errors in the current setup model. Specifically, a high positive speed vernier value often correlated to a large error. Secondly, it has been found that large changes to the model flow stress values between coils are correlated frequently with larger errors in the current setup force model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The behaviour of steel undergoing hot deformation was examined with the aim of better understanding the softening mechanisms operating during industrial hot strip rolling. These softening mechanisms can significantly influence the deformation force required to attain a given reduction in thickness, and this work answered a number of questions with regard to the transition between softening mechanisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The deformation and fracture mechanisms of a low carbon microalloyed steel processed by asymmetric rolling (AsR) and symmetric rolling (SR) were compared by microstructural and texture evolutions during uniaxial tensile deformation. A realistic microstructure-based micromechanical modeling was involved as well. AsR provides more effective grain refinement and beneficial shear textures, leading to higher ductility and extraordinary strain hardening with improved yield and ultimate tensile stresses as well as promoting the occurrence of ductile fracture. This was verified and further explained by means of the different fracture modes during quasi-static uniaxial deformation, the preferred void nucleation sites and crack propagation behavior, and the change in the dislocation density based on the kernel average misorientation (KAM) distribution. The equivalent strain/stress partitioning during tensile deformation of AsR and SR specimens was modeled based on a two-dimensional (2D) representative volume element (RVE) approach. The trend of strain/stress partitioning in the ferrite matrix agrees well with the experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work has investigated the evolution of microbands (MBs) and their interaction with strain-induced NbC precipitates during uniaxial compression of a model austenitic Fe-30Ni-Nb steel at 925 °C. The (1 1 0) fibre grains, both without and with copious amounts of precipitates, contained up to large strains crystallographic MBs aligned close to the highly stressed {1 1 1} slip planes having large Schmid factors. The MBs thus maintained their crystallographic character during straining, through continuously rearranging themselves, and did not follow the macroscopically imposed rigid body rotation. During double-pass deformation, fine NbC particles formed at short inter-pass holding remained strongly pinned at small reloading strains and appeared to be dragged by rearranging MB walls. With increasing reloading strain, the fine precipitates became progressively released from the above walls. During reloading after increased holding time, the coarsened particles tended with their increased size to become increasingly detached from the MB walls already at a small strain. The precipitate-free MB wall segments rearranged during straining to maintain their crystallographic alignment, while the detached precipitates followed the sample shape change and rotated towards the compression plane. The MB wall rearrangement generally occurred through cooperative migration of the corresponding dislocation networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An as-cast austenitic stainless steel was hot deformed at 1173 K, 1223 K, and 1373 K (900 °C, 950 °C, and 1100 °C) to a strain of 1 with a strain rate of 0.5 or 5 s−1. The recrystallised fraction is observed to be dependent on dynamic recrystallisation (DRX). DRX grains nucleated at the initial stages of recrystallization have similar orientation to that of the deformed grains. With increasing deformation, Cube texture dominates, mainly due to multiple twinning and grain rotation during deformation.