40 resultados para Heat Transfer, Combustion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that the gas–solid system plays a significant role in many industrial processes. It is a complex physical and chemical process, generally consisting of heat transfer, mass transfer, species diffusion, and chemical reactions. In this paper, the reaction of methane with air at a low air factor and the gas flow in a fluidized bed with 0.1 mm solid particles are computationally simulated to enable the study of the effect of the inert particles on the species diffusion and the chemical reactions. The reaction of methane and air is modeled by a two-step reaction mechanism that produces a continuous fluid phase composed of six gases (CH4, CO, O2, CO2, H2O, and N2) and discrete solid particles in the reactor. The simulation results are compared with experiment and show that the finite rate model and the eddy dissipation model can well describe the reactions of gases in high-density gas–solid systems. The distribution of each gas and the particle behaviors are analyzed for incomplete combustion at different concentrations of loaded solid particles. The inert particles change the reactions by enhancing both the chemical kinetics and the species diffusion dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study examined waste heat recovery systems for combustion engines. Emission tests with a real vehicle showed that fuel consumption and CO2 emissions can be reduced by over 7% for the official certification drive cycle through direct heat transfer from the exhaust gas to the engine oil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents experimental and computational results obtained on the Ford Barra 190 4.0 litres I6 gasoline engine and on the Ford Falcon car equipped with this engine. Measurements of steady engine performance, fuel consumption and exhaust emissions were first collected using an automated test facility for a wide range of cam and spark timings vs. throttle position and engine speed. Simulations were performed for a significant number of measured operating points at full and part load by using a coupled Gamma Technologies GT-POWER/GT-COOL engine model for gas exchange, combustion and heat transfer. The fluid model was made up of intake and exhaust systems, oil circuit, coolant circuit and radiator cooling air circuit. The thermal model was made up of finite element components for cylinder head, cylinder, piston, valves and ports and wall thermal masses for pipes. The model was validated versus measured steady state air and fuel flow rates, cylinder pressure parameters, indicated and brake mean effective pressures, and temperature of metal, oil and coolant in selected locations. Computational results agree well with experiments, demonstrating the ability of the approach to produce fairly accurate steady state maps of BMEP and BSFC, as well as to optimize engine operation changing geometry, throttle position, cam and spark timing. Measurements of the transient performance and fuel consumption of the full vehicle were then collected over the NEDC cycle. Simulations were performed by using a coupled Gamma Technologies GT-POWER/GT-COOL/GT-DRIVE model for instantaneous engine gas exchange, combustion and heat transfer and vehicle motion. The full vehicle model is made up of transmission, driveshaft, axles, and car components and the previous engine model. The model was validated with measured fuel flow rates through the engine, engine throttle position, and engine speed and oil and coolant temperatures in selected locations. Instantaneous engine states following a time dependent demand for torque and speed differ from those obtained by interpolating steady state maps of BSFC vs. BMEP and speed. Computational results agree well with experiments, demonstrating the utility of the approach in providing a more accurate prediction of the fuel consumption over test cycles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical study of the natural-convection flow and heat transfer in a dome-shaped, heat-generating, porous enclosure is considered. The general conic equation for the top dome is used to consider various conical top sections such as circular, elliptical, parabolic, and hyperbolic. The individual effect of fluid Rayleigh, Darcy, and heat-generating parameters on flow patterns and heat transfer rates are analyzed and presented. The predicted results show that the heat-generating parameter has the most significant contribution toward the growth of bicellular core flow. Moreover, there is significant change in temperature distribution in comparison to rectangular enclosures, due to the existence of the domed-shape top adiabatic cover. The results also show that, regardless of Darcy and Rayleigh values, a flat adiabatic top cover tends to yield the highest value of Nusselt number, followed by circular, elliptical, parabolic, and hyperbolic top covers, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a series of numerical simulations dealing with the problem of natural convection flows and associated heat transfer in an enclosure filled with a fluid-saturated porous medium. The analysis is based on the finite element technique and incorporates the Brinkman-extended Darcy model for an oval enclosure. The numerical results obtained for a modified Rayleigh number, Ra, Darcy number, Da, offset, E, and eccentricity, e, are presented and discussed. The numerical predictions for a square enclosure compared well with published data. It is found that any increase in Da or Ra results in a higher fluid velocity that is responsible for shifting the core of the flow. Moreover, at higher ovality (E = 0.5), asymmetric flow is observed even at the lower range of Rayleigh number (Ra ⩽ 20), which may be attributed to the effect of curved isothermal wall.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Latest trends in waste heat recovery include systems like Thermo Electric Generation (TEG), Rankine cycle, and active warm up systems. The advantages and disadvantages of different approaches are critically discussed and compared with a novel and effective oil heating system that can deliver between 7% and 12% reductions of CO2 emissions and fuel consumption. The comparison includes the expected CO2 and fuel saving potential related to the legal drive cycle as well as real world driving, effects on regulated exhaust emissions, utilisation of resources, maintenance and service, vehicle performance, comfort, noise, and durability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Architects and designers could readily use a quick and easy tool to determine the solar heat gains of their selected glazing systems for particular orientations, tilts and climate data. Speedy results under variable solar angles and degree of irradiance would be welcomed by most. Furthermore, a newly proposed program should utilise the outputs of existing glazing tools and their standard information, such as the use of U-values and Solar Heat Gain Coefficients (SHGC’s) as generated for numerous glazing configurations by the well-known program WINDOW 6.0 (LBNL, 2001). The results of this tool provide interior glass surface temperature and transmitted solar radiation which link into comfort analysis inputs required by the ASHRAE Thermal Comfort Tool –V2 (ASHRAE, 2011). This tool is a simple-to-use calculator providing the total solar heat gain of a glazing system exposed to various angles of solar incidence. Given basic climate (solar) data, as well as the orientation of the glazing under consideration the solar heat gain can be calculated. The calculation incorporates the Solar Heat Gain Coefficient function produced for the glazing system under various angles of solar incidence WINDOW 6.0 (LBNL, 2001). The significance of this work rests in providing an orientation-based heat transfer calculator through an easy-to-use tool (using Microsoft EXCEL) for user inputs of climate and Solar Heat Gain Coefficient (WINDOW-6) data. We address the factors to be considered such as solar position and the incident angles to the horizontal and the window surface, and the fact that the solar heat gain coefficient is a function of the angle of incidence. We also discuss the effect of the diffuse components of radiation from the sky and those from ground surface reflection, which require refinement of the calculation methods. The calculator is implemented in an Excel workbook allowing the user to input a dataset and immediately produce the resulting solar gain. We compare this calculated total solar heat gain with measurements from a test facility described elsewhere in this conference (Luther et.al., 2012).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Latest trends in waste heat recovery include systems like Thermo Electric Generation (TEG), Rankine cycle, and active warm up systems. The advantages and disadvantages of different approaches are critically discussed and compared with a novel and effective oil heating system that can deliver between 7% and 12% reductions of CO2 emissions and fuel consumption. The comparison includes the expected CO2 and fuel saving potential related to the legal drive cycle as well as real world driving, effects on regulated exhaust emissions, utilisation of resources, maintenance and service, vehicle performance, comfort, noise, and durability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper comprehensively investigates performance of evolutionary algorithms for design optimization of shell and tube heat exchangers (STHX). Genetic algorithm (GA), firefly algorithm (FA), and cuckoo search (CS) method are implemented for finding the optimal values for seven key design variables of the STHX model. ε-NTU method and Bell-Delaware procedure are used for thermal modeling of STHX and calculation of shell side heat transfer coefficient and pressure drop. The purpose of STHX optimization is to maximize its thermal efficiency. Obtained results for several simulation optimizations indicate that GA is unable to find permissible and optimal solutions in the majority of cases. In contrast, design variables found by FA and CS always lead to maximum STHX efficiency. Also computational requirements of CS method are significantly less than FA method. As per optimization results, maximum efficiency (83.8%) can be achieved using several design configurations. However, these designs are bearing different dollar costs. Also it is found that the behavior of the majority of decision variables remains consistent in different runs of the FA and CS optimization processes.