53 resultados para GEOMETRICAL ISOMERIZATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents design, construction, and evaluation of a micropump for drug delivery applications. The proposed micropump consists of three components: fluidics, electronics, and software. The fluidics component includes a silicone elastic diaphragm, a microservo, housing and two check valves. The diaphragm is modeled and simulated to establish its geometrical specifications. The housing is built using a rapid prototype machine. The electronics component consists of a microcontroller, a microswitch array, a simple display and a power unit. The software component is written in C and receives inputs from user, controls the microservo speed and displays the programmed speed. A number of experiments are conducted to evaluate the performance and capabilities of the micropump. The experiments focus on measurement of flow rate, dosage and duration of operation. A discussion of the performance and capabilities of the developed micropump is also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dielectric properties of conducting polymer composites containing polypyrrole (PPy) crushed films, PPy powder, polyaniline (PAn) base and acid powders as the dispersants and silicone rubber and vinyl ester as matrix materials have been investigated in the frequency range 2-18 GHz. The dielectric parameters such as the real part, epsiprime, and imaginary part, epsiPrime, of the permittivity and loss tangent, tandelta, increase with increasing conductivity and concentration of the dispersant. The geometrical shape of the dispersant governs the ability of conductive network formation which is indicated by a large drop in the resistivity of the composite. Also, dispersant/matrix interactions and physical properties of the matrix influence the agglomeration of the dispersant phase which, in turn, affects the dielectric properties of the composites. Flakes of PPy obtained by crushing highly conductive films and large PAn powder aggregates were unable to form a conducting network. The composites without a network of dispersant exhibit low dielectric parameters. On the other hand, high values of tan delta ranging from 0.7–1.1 were achieved for the PPy powder (15 parts)/silicone rubber composites where a conducting network was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Succinonitrile (N≡C—CH2—CH2—C≡N) is a good ionic conductor, when doped with an ionic compound, at room temperature, where it is in its plastic crystalline phase (Long et al. Solid State Ionics 2003, 161, 105; Alarco et al. Nat. Mater. 2004, 3, 476). We report on the relaxational dynamics of the plastic phase near the two first-order phase transitions and on the effect of dissolving a salt in the plastic matrix by quasi-elastic neutron scattering. At 240 K, the three observed relaxations are localized and we can describe their dynamics (τ ≈ 1.7, 17, and 140 ps) to a certain extent from a model using a single molecule that was proposed by Bée et al. allowing for all conformations in its unit cell (space group IM3M). The extent of the localized motion as observed is however larger than that predicted by the model and suggests that the isomerization of succinonitrile is correlated with a jump to the nearest neighbor site in the unit cell. The salt containing system is known to be a good ionic conductor, and our results show that the effect of the ions on the succinonitrile matrix is homogeneous. Because the isomerizations and rotations are governed by intermolecular interactions, the dissolved ions have an effect over an extended range. Due to the addition of the salt, the dynamics of one of the components (τ ≈ 17 ps) shows more diffusive character at 300 K. The calculated upper limit of the corresponding diffusion constant of succinonitrile in the electrolyte is a factor 30 higher than what is reported for the ions. Our results suggest that the succinonitrile diffusion is caused by nearest neighbor jumps that are localized on the observed length and time scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the study, both experimental work and numerical modeling are performed to investigate the pore size effects on the mechanical properties and deformation behaviours of titanium foams. Cylindrical titanium foam samples with different pore sizes are fabricated through powder metallurgy. Scanning electron microscope (SEM) is used to determine the pore size, pore distribution and the ratios of the length to width of pores. Compressive tests are carried out to determine the mechanical properties of the titanium foams with different pore sizes. Finally, finite element modeling is attempted to simulate the deformation behaviour and the mechanical properties of the titanium foams. Results indicate that titanium foams with different pore sizes have different geometrical characteristics, which lead to different deformation behaviours of cell walls during compression, resulting in different mechanical properties of titanium foams.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane is usually subject to fouling by various organic foulants, such as yeast, protein and sodium alginate during filtration. Backwashing is a common practice to reduce membrane fouling. It is essential to evaluate the effects of backwashing on fouling in order to optimize operational parameters. In this experiment, poly(vinylidene fluoride) (PVDF) membranes were used to filter organic foulants from suspensions in a dead-end stirred cell. Three types of organic foulants including yeast, protein and sodium alginate which were stained with fluorescent dyes before filtration were used with different combinations in the experiments. After filtration, the PVDF membrane was backwashed.

Consequently, a stack of images, instrumental data and sample data were captured from the fouling layers on the PVDF membrane surface using confocal laser scanning microscope (CLSM) and its associated image acquisition software LAS AF. Then, the quality of the images was enhanced for better visualization and a set of quantitative fouling data were derived by using the software code developed by the project team at Deakin University.

This collection contains raw image data of poly(vinylidene fluoride) (PVDF) membrane’s fouling layer when three types of organic foulants present, which are captured by confocal laser scanning microscopy (CLSM) and its software, and the instrumental and sample metadata, the processed image data and the geometrical structure properties of the fouling layer. By comparing with the same membrane without backwashing, the efficiency of backwashing was computed.

This data collection would be useful to evaluate the backwashing efficiency of PVDF membrane in order to optimize frequency and operational conditions of backwashing by membrane materials researchers and water researchers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nose geometry of a hard and brittle metal cutting tool is generally modified in order to avoid the premature failure due to fracture under tensile stresses. While most research findings point to a favourable mechanical load pattern, the possible influence of the shape of the geometry on the thermal fields and the consequent changes in the stressed state of the tool seem to have attained less attention. The present work aims at establishing the thermal behaviour of bevelled tools under varying geometrical and process parameters. Data generated from statistically designed experiments and quick-stop chip samples are coupled to conduct numerical investigations using a mixed finite and boundary element solution to obtain the temperature distribution in bevelled carbide inserts. Due consideration is given to the presence of the stagnation zone and its size and shape. While the cutting forces and temperatures increased owing to the blunt shape of the tool, the possible absence of tensile stresses was found to be the likely effect of a more uniform temperature distribution resulting from a significant plastic contact on the principal flank and the consequent flank heat source. The characteristic low-temperature zones close to the nose of the conventional tool are taken over by the stagnation zone in bevelled tools. © IMechE 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanisms underlying thiol-based redox control are poorly defined. Disulfide bonds between Cys residues are commonly thought to confer extra rigidity and stability to their resident protein, forming a type of proteinaceous spot weld. Redox biologists have been redefining the role of disulfides over the last 30–40 years. Disulfides are now known to form in the cytosol under conditions of oxidative stress. Isomerization of extracellular disulfides is also emerging as an important regulator of protein function. The current paradigm is that the disulfide proteome consists of two subproteomes: a structural group and a redox-sensitive group. The redoxsensitive group is less stable and often associated with regions of stress in protein structures. Some characterized redox-active disulfides are the helical CXXC motif, often associated with thioredoxin-fold proteins; and forbidden disulfides, a group of metastable disulfides that disobey elucidated rules of protein stereochemistry. Here we discuss the role of redox-active disulfides as switches in proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applications of localized surface plasmon resonance (LSPR) such as surface enhanced Raman scattering (SERS) devices, biosensors, and nano-optics are growing. Investigating and understanding of the parameters that affect the LSPR spectrum is important for the design and fabrication of LSPR devices. This paper studies different parameters, including geometrical structures and light attributes, which affect the LSPR spectrum properties such as plasmon wavelength and enhancement factor. The paper also proposes a number of rules that should be considered in the design and fabrication of LSPR devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applications of localized surface plasmon resonance (LSPR) such as surface enhanced Raman scattering (SERS) devices, biosensors, and nano-optics are growing. Investigating and understanding of the parameters that affect the LSPR spectrum is important for the design and fabrication of LSPR devices. This paper studies different parameters, including geometrical structures and light attributes, which affect the LSPR spectrum properties such as plasmon wavelength and enhancement factor. The paper also proposes a number of rules that should be considered in the design and fabrication of LSPR devices

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical calculations for some structural and electronic properties of the azide moiety in the nucleoside reverse transcriptase (RT) inhibitor 3′-azido-3′- deoxythymidine (AZT) are reported. These properties, which include geometrical properties in three dimensional space, Hirshfeld charges, electrostatic potential (MEP), vibrational frequencies, and core and valence ionization spectra, are employed to study how the azide group is affected by the presence of a larger fragment. For this purpose, two small but important organic azides, hydrazoic acid and methyl azide, are also considered. The general features of trans Cs configuration for RNNN fragments[1] is distorted in the large AZT bio-molecule. Hirshfeld charge analysis shows charges are reallocated more evenly on azide when the donor group R is not a single atom. Infrared and photoelectron spectra reveal different aspects of the compounds. In conclusion, the electronic structural properties of the compounds depend on the specific property, the local structure and chemical environment of a species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, a geometrical model was introduced to improve the hair trapping via a surface contacting the yarn-twisting triangle during ring twisting of two single yarns. The fiber-trapping improvement with the contact surface was analyzed theoretically. Then, single Ne 80 ring cotton yarns were used to produce two-ply yarns under different ring-twisting conditions, namely conventional twisting, dry twisting of yarns with a plane surface, wet twisting of yarns with a plane surface, dry twisting of yarns with a grooved surface, and wet twisting of yarns with a grooved surface. Plied yarn properties, including yarn hairiness, strength, and irregularity, were tested. The Student Newman Keuls (SNK) test and variation analysis were also carried out in the SPSS program to study the effect of different contact surfaces on related yarn properties; the significance level was 0.05 for the SNK test and variation analysis. The hairiness of plied yarns was significantly reduced when twisting with the plane or grooved surface, especially for the wet twisting cases. This corresponds well with our model on improving fiber trapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a fast and accurate method for extracting the scattering parameters of a RF MEMS switch by using its essential parameters. A neural network is developed for parametric modeling of the switch. The essential parameters of the switch are analyzed in terms of its return loss and isolation with variation of its geometrical component values. Simulation results show that the proposed approach can be used to accurately model the RF characteristics of RF-MEMS switches. The results show good agreement between the neural network prediction and electromagnetic simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new spectral clustering method called correlation preserving indexing (CPI), which is performed in the correlation similarity measure space. In this framework, the documents are projected into a low-dimensional semantic space in which the correlations between the documents in the local patches are maximized while the correlations between the documents outside these patches are minimized simultaneously. Since the intrinsic geometrical structure of the document space is often embedded in the similarities between the documents, correlation as a similarity measure is more suitable for detecting the intrinsic geometrical structure of the document space than euclidean distance. Consequently, the proposed CPI method can effectively discover the intrinsic structures embedded in high-dimensional document space. The effectiveness of the new method is demonstrated by extensive experiments conducted on various data sets and by comparison with existing document clustering methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimisation techniques have become more and more important as the possibility of simulating complex mechanical structures has become a reality. A common tool in the layout design of structural parts is the topology optimisation method, which finds an optimum material distribution within a given geometrical design space to best meet loading conditions and constraints. Another important method is shape optimisation, which optimises weight given parametric geometric constraints. In the case of complex shaped parts or elaborate assemblies, for example automobile body structures, shape optimisation is still hard to do; mainly due to the difficulty in translating shape design parameters into meaningful analysis models. Tools like the parametric geometry package SFE CONCEPT are designed to mitigate these issues. Nevertheless, shape methods usually cannot suggest new load path configurations, while topology methods are often confined to single parts. To overcome these limitations the authors have developed a method that combines both approaches into an Integral Shape/Topology Method (IST) that is capable of finding new optimal solutions. This is achieved by an automated optimisation loop and can be applied for both thin walled structures as well as solid 3D geometries. When optimising structures by applying IST, global optimum solutions can be determined that may not be obtained with isolated shape- or topology-optimisation methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is well documented in literature that the coronary artery bypass graft is normally fail after a short period of time, due to the development of plaque known as intimal hyperplasia within the graft. Various in vivo and in vitro studies have linked the development of intimal hyperplasia to the abnormal hemodynamics and compliance mismatch. Therefore, it is essential to fully understand the relationship between the hemodynamics inside the coronary artery bypass and its mechanical and geometrical characteristics under the correct physiological conditions. In this work, hemodynamic of the bypass graft is studied numerically. The effect of the host and graft diameters ratio, the angle of anastomosis and the graft configuration on the local flow patterns and the distribution of wall shear stress are examined. The pulsatile waveforms boundary conditions are adopted from in vivo measurement data to study the hemodynamics of composite grafts namely Consequence and Y grafting in terms temporal and spatial distributions of the blood flows. Moreover, various non-Newtonian and Newtonian models of blood have been carried out to examine the numerical simulation of blood flow in stenosis artery. The results are presented and discussed for various operating conditions.