38 resultados para Fluvial Abrasion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discarded silicone products can be recycled to prepare superhydrophobic powder by simply burning and smashing. The powder can be used to fabricate a superhydrophobic surface with mechanical durability such that the superhydrophobicity was kept after 50 abrasion cycles. A robust electroconductive superhydrophobic surface can also be obtained by this simple method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Co-woven-knitted (CWK) fabrics have been reported previously. Historically these unique structures have been used to develop composite and shielding fabrics. In this study, novel CWK structures with unique appearances was developed with a modified machine using wool and polyester yarns. The physical properties of these fabrics were compared with conventional woven and knitted fabrics. The thickness of the CWK fabrics was similar to knits. The fabrics showed a unique tensile strength, with higher bending rigidity, and performed better in abrasion resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of superhydrophobic surfaces with mechanical durability is challenging because the surface microstructure is easily damaged. Herein, we report superhydrophobic conductive graphite nanoplatelet (GNP)/vapor-grown carbon fiber (VGCF)/polypropylene (PP) composite coatings with mechanical durability by a hot-pressing method. The as-prepared GNP/VGCF/PP composite coatings showed water contact angle (WCA) above 150° and sliding angle (SA) less than 5°. The superhydrophobicity was improved with the increase of VGCF content in the hybrid GNP and VGCF fillers. The more VGCFs added in the GNP/VGCF/PP composite coating, the higher porosity on the surface was formed. Compared to the GNP/PP and VGCF/PP composite coatings, the GNP and VGCF hybrid fillers exhibited more remarkable synergistic effect on the electrical conductivity of the GNP/VGCF/PP composite coatings. The GNP/VGCF/PP composite coating with GNP:VGCF = 2:1 possessed a sheet resistance of 1 Ω/sq. After abrasion test, the rough microstructure of the GNP/VGCF/PP (2:1) composite coating was mostly restored and the composite coating retained superhydrophobicity, but not for the VGCF/PP composite coating. When the superhydrophobic surface is mechanically damaged with a loss of superhydrophobicity, it can be easily repaired by a simple way with adhesive tapes. Moreover, the oil-fouled composite surface can regenerate superhydrophobicity by wetting the surface with alcohol and subsequently burning off alcohol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the Holocene palaeo-environmental record of the Tuggerah Lake barrier estuary on the south-east coast of Australia to determine the influence of local, regional and global environmental changes on estuary development. Using multi-proxy approaches, we identified significant down-core variation in sediment cores relating to sea-level rise and regional climate change. Following erosion of the antecedent land surface during the post-glacial marine transgression, sediment began to accumulate at the more seaward location at ~8500. years before present, some 1500. years prior to barrier emplacement and ~4000. years earlier than at the landward site. The delay in sediment accumulation at the landward site was a consequence of exposure to wave action prior to barrier emplacement, and due to high river flows of the mid-Holocene post-barrier emplacement. As a consequence of the mid-Holocene reduction in river flows, coupled with a moderate decline in sea-level, the lake experienced major changes in conditions at ~4000. years before present. The entrance channel connecting the lake with the ocean became periodically constricted, producing cyclic alternation between intervals of fluvial- and marine-dominated conditions. Overall, this study provides a detailed, multi-proxy investigation of the physical evolution of Tuggerah Lake with causative environmental processes that have influenced development of the estuary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, we have reported a method for producing photochromic wool fabric by applying a thin layer of hybrid silica-photochromic dye onto the wool surface. While the photochromic coating showed a very fast optical response and had little influence on the fabric handle, its durability was poor. In this study, the durability of the photochromic coating layer was improved by introducing epoxy groups into the silica matrix via co-hydrolysis and co-condensation of an alkyl trialkoxysilane compound (ATAS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The presence of epoxy groups in the silica enhanced both washing and abrasion durability or fastness. In addition, the optical response speed was slightly increased as well. Effects of the type of alkyl silane and the GPTMS/alkyl silane ratio on the coating durability, fabric handle and optical response were examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although coastal vegetated ecosystems are widely recognised as important sites of long-term carbon (C) storage, substantial spatial variability exists in quantifications of these ‘blue C’ stocks. To better understand the factors behind this variability we investigate the relative importance of geomorphic and vegetation attributes to variability in the belowground C stocks of saltmarshes in New South Wales (NSW), southeast Australia. Based on the analysis of over 140 sediment cores, we report mean C stocks in the surface metre of sediments (mean ± SE = 164.45 ± 8.74 Mg C ha−1) comparable to global datasets. Depth-integrated stocks (0–100 cm) were more than two times higher in fluvial (226.09 ± 12.37 Mg C ha−1) relative to marine (104.54 ± 7.11) geomorphic sites, but did not vary overall between rush and non-rush vegetation structures. More specifically, sediment grain size was a key predictor of C density, which we attribute to the enhanced C preservation capacity of fine sediments and/or the input of stable allochthonous C to predominantly fine-grained, fluvial sites. Although C density decreased significantly with sediment depth in both geomorphic settings, the importance of deep C varied substantially between study sites. Despite modest spatial coverage, NSW saltmarshes currently hold approximately 1.2 million tonnes of C in the surface metre of sediment, although more C may have been returned to the atmosphere through habitat loss over the past approximately 200 years. Our findings highlight the suitability of using sedimentary classification to predict blue C hotspots for targeted conservation and management activities to reverse this trend.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter investigates two important processing methods, such as welding and machine of duplex stainless steel. The welding process welding generally degrades the properties of these materials by redistributing the phases during melting and solidification. On the other hand, the redistribution during machining mainly take place combined effect of stress, strain rate and temperature. Mechanism of machining process and several welding methods has been analysed in details. It was found that outcomes of welding processes depend on the welding methods. Most of the cases an appropriate annealing process can be used to restore the expected properties of the weld joints though the parameters of annealing process are different in different welding methods. Nonmetallic inclusions and the low carbon content of duplex stainless steel reduce the machinability of duplex stainless steel. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Abrasion and adhesion were the most common wear modes developed on the flank and rake faces. Adhesion wear being the most prevalent on the flank face, appeared to be initiated by built-up edge formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seafloors of unconsolidated sediment are highly dynamic features; eroding or accumulating under the action of tides, waves and currents. Assessing which areas of the seafloor experienced change and measuring the corresponding volumes involved provide insights into these important active sedimentation processes. Computing the difference between Digital Elevation Models (DEMs) obtained from repeat Multibeam Echosounders (MBES) surveys has become a common technique to identify these areas, but the uncertainty in these datasets considerably affects the estimation of the volumes displaced. The two main techniques used to take into account uncertainty in volume estimations are the limitation of calculations to areas experiencing a change in depth beyond a chosen threshold, and the computation of volumetric confidence intervals. However, these techniques are still in their infancy and, as a result, are often crude, seldom used or poorly understood. In this article, we explored a number of possible methodological advances to address this issue, including: (1) using the uncertainty information provided by the MBES data processing algorithm CUBE, (2) adapting fluvial geomorphology techniques for volume calculations using spatially variable thresholds and (3) volumetric histograms. The nearshore seabed off Warrnambool harbour - located in the highly energetic southwest Victorian coast, Australia - was used as a test site. Four consecutive MBES surveys were carried out over a four-months period. The difference between consecutive DEMs revealed an area near the beach experiencing large sediment transfers - mostly erosion - and an area of reef experiencing increasing deposition from the advance of a nearby sediment sheet. The volumes of sediment displaced in these two areas were calculated using the techniques described above, both traditionally and using the suggested improvements. We compared the results and discussed the applicability of the new methodological improvements. We found that the spatially variable uncertainty derived from the CUBE algorithm provided the best results (i.e. smaller confidence intervals), but that similar results can be obtained using as a fixed uncertainty value derived from a reference area under a number of operational conditions.