70 resultados para Fluoride adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This sub-collection is the result of an investigation into the mechanism of organic fouling in membrane filtration processes. In this experiment, poly(vinylidene fluoride) (PVDF) membranes were used to filter three types of organic foulants, yeast, protein and sodium alginate with a concentration of 50mg/l, 40mg/l and 20 mg/l, respectively, from suspension in a dead-end filtration cell. These model foulants were stained with fluorescent dyes before filtration. This dataset contains a stack of images of the fouling layer on the PVDF membrane surface captured by a confocal laser scanning microscope (CLSM) and its associated acquisition software. This dataset would be useful to researchers who are investigating the membrane organic fouling mechanism so that new membrane materials and new anti-fouling surface treatment technologies can be developed for water and wastewater industry in the future .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute–solute interactions that are likely caused by π–π interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a surface force apparatus, we have measured the normal and friction forces between layers of the human glycoprotein lubricin, the major boundary lubricant in articular joints, adsorbed from buffered saline solution on various hydrophilic and hydrophobic surfaces: i), negatively charged mica, ii), positively charged poly-lysine and aminothiol, and iii), hydrophobic alkanethiol monolayers. On all these surfaces lubricin forms dense adsorbed layers of thickness 60–100 nm. The normal force between two surfaces is always repulsive and resembles the steric entropic force measured between layers of end-grafted polymer brushes. This is the microscopic mechanism behind the antiadhesive properties showed by lubricin in clinical tests. For pressures up to ∼6 atm, lubricin lubricates hydrophilic surfaces, in particular negatively charged mica (friction coefficient μ = 0.02–0.04), much better than hydrophobic surfaces (μ > 0.3). At higher pressures, the friction coefficient is higher (μ > 0.2) for all surfaces considered and the lubricin layers rearrange under shear. However, the glycoprotein still protects the underlying substrate from damage up to much higher pressures. These results support recent suggestions that boundary lubrication and wear protection in articular joints are due to the presence of a biological polyelectrolyte on the cartilage surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Randomly oriented poly(vinylidene fluoride) (PVDF) nanofibre webs prepared by a needleless electrospinning technique were used as an active layer for making mechanical-to-electrical energy harvest devices. With increasing the applied voltage in the electrospinning process, a higher b crystal phase was formed in the resulting PVDF nanofibres, leading to enhanced mechanical-to-electrical energy conversion of the devices. The power generated by the nanofibre devices was able to drive a miniature Peltier cooler, which may be useful for the development of mechanically driven cooling textile. In addition, the needleless electrospinning also showed great potential in the production of nanofibres on a large scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exploring high performance cathode materials is essential to realize the adoption of Li-ion batteries for application in electric vehicles and hybrid electric vehicles. FeF3, as a typical iron-based fluoride, has been attracting considerable interest due to both the high electromotive force value of 2.7 V and the high theoretical capacity of 237 mA h g_1 (1e_ transfer). In this study, we report a facile lowtemperature solution phase approach for synthesis of uniform iron fluoride nanocrystals on reduced graphene sheets stably suspended in ethanol solution. The resulting hybrid of iron fluoride nanocrystals and graphene sheets showed high specific capacity and high rate performance for iron fluoride type cathode materials. High stable specific capacity of about 210 mA h g_1 at a current density of 0.2 C was achieved, which is much higher than that of LiFePO4 cathode material. Notably, these iron fluoride/ nanocomposite cathode materials demonstrated superior rate capability, with discharge capacities of 176, 145 and 113 mA h g_1 at 1, 2 and 5 C, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.