86 resultados para Feynman-Kac formula Markov semigroups principal eigenvalue


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a method for recognising an agent's behaviour in dynamic, noisy, uncertain domains, and across multiple levels of abstraction. We term this problem on-line plan recognition under uncertainty and view it generally as probabilistic inference on the stochastic process representing the execution of the agent's plan. Our contributions in this paper are twofold. In terms of probabilistic inference, we introduce the Abstract Hidden Markov Model (AHMM), a novel type of stochastic processes, provide its dynamic Bayesian network (DBN) structure and analyse the properties of this network. We then describe an application of the Rao-Blackwellised Particle Filter to the AHMM which allows us to construct an efficient, hybrid inference method for this model. In terms of plan recognition, we propose a novel plan recognition framework based on the AHMM as the plan execution model. The Rao-Blackwellised hybrid inference for AHMM can take advantage of the independence properties inherent in a model of plan execution, leading to an algorithm for online probabilistic plan recognition that scales well with the number of levels in the plan hierarchy. This illustrates that while stochastic models for plan execution can be complex, they exhibit special structures which, if exploited, can lead to efficient plan recognition algorithms. We demonstrate the usefulness of the AHMM framework via a behaviour recognition system in a complex spatial environment using distributed video surveillance data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the problem of tracking an object and predicting the object's future trajectory in a wide-area environment, with complex spatial layout and the use of multiple sensors/cameras. To solve this problem, there is a need for representing the dynamic and noisy data in the tracking tasks, and dealing with them at different levels of detail. We employ the Abstract Hidden Markov Models (AHMM), an extension of the well-known Hidden Markov Model (HMM) and a special type of Dynamic Probabilistic Network (DPN), as our underlying representation framework. The AHMM allows us to explicitly encode the hierarchy of connected spatial locations, making it scalable to the size of the environment being modeled. We describe an application for tracking human movement in an office-like spatial layout where the AHMM is used to track and predict the evolution of object trajectories at different levels of detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies in speculative prefetching focus on building and evaluating access models for the purpose of access prediction. This paper investigates a complementary area which has been largely ignored, that of performance modelling. We use improvement in access time as the performance metric, for which we derive a formula in terms of resource parameters (time available and time required for prefetching) and speculative parameters (probabilities for next access). The performance maximization problem is expressed as a stretch knapsack problem. We develop an algorithm to maximize the improvement in access time by solving the stretch knapsack problem, using theoretically proven apparatus to reduce the search space. Integration between speculative prefetching and caching is also investigated, albeit under the assumption of equal item sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activity recognition is an important issue in building intelligent monitoring systems. We address the recognition of multilevel activities in this paper via a conditional Markov random field (MRF), known as the dynamic conditional random field (DCRF). Parameter estimation in general MRFs using maximum likelihood is known to be computationally challenging (except for extreme cases), and thus we propose an efficient boosting-based algorithm AdaBoost.MRF for this task. Distinct from most existing work, our algorithm can handle hidden variables (missing labels) and is particularly attractive for smarthouse domains where reliable labels are often sparsely observed. Furthermore, our method works exclusively on trees and thus is guaranteed to converge. We apply the AdaBoost.MRF algorithm to a home video surveillance application and demonstrate its efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to learn and recognize human activities of daily living (ADLs) is important in building pervasive and smart environments. In this paper, we tackle this problem using the hidden semi-Markov model. We discuss the state-of-the-art duration modeling choices and then address a large class of exponential family distributions to model state durations. Inference and learning are efficiently addressed by providing a graphical representation for the model in terms of a dynamic Bayesian network (DBN). We investigate both discrete and continuous distributions from the exponential family (Poisson and Inverse Gaussian respectively) for the problem of learning and recognizing ADLs. A full comparison between the exponential family duration models and other existing models including the traditional multinomial and the new Coxian are also presented. Our work thus completes a thorough investigation into the aspect of duration modeling and its application to human activities recognition in a real-world smart home surveillance scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of learning and recognizing human activities of daily living (ADL), which is an important research issue in building a pervasive and smart environment. In dealing with ADL, we argue that it is beneficial to exploit both the inherent hierarchical organization of the activities and their typical duration. To this end, we introduce the Switching Hidden Semi-Markov Model (S-HSMM), a two-layered extension of the hidden semi-Markov model (HSMM) for the modeling task. Activities are modeled in the S-HSMM in two ways: the bottom layer represents atomic activities and their duration using HSMMs; the top layer represents a sequence of high-level activities where each high-level activity is made of a sequence of atomic activities. We consider two methods for modeling duration: the classic explicit duration model using multinomial distribution, and the novel use of the discrete Coxian distribution. In addition, we propose an effective scheme to detect abnormality without the need for training on abnormal data. Experimental results show that the S-HSMM performs better than existing models including the flat HSMM and the hierarchical hidden Markov model in both classification and abnormality detection tasks, alleviating the need for presegmented training data. Furthermore, our discrete Coxian duration model yields better computation time and generalization error than the classic explicit duration model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Directly modeling the inherent hierarchy and shared structures of human behaviors, we present an application of the hierarchical hidden Markov model (HHMM) for the problem of activity recognition. We argue that to robustly model and recognize complex human activities, it is crucial to exploit both the natural hierarchical decomposition and shared semantics embedded in the movement trajectories. To this end, we propose the use of the HHMM, a rich stochastic model that has been recently extended to handle shared structures, for representing and recognizing a set of complex indoor activities. Furthermore, in the need of real-time recognition, we propose a Rao-Blackwellised particle filter (RBPF) that efficiently computes the filtering distribution at a constant time complexity for each new observation arrival. The main contributions of this paper lie in the application of the shared-structure HHMM, the estimation of the model's parameters at all levels simultaneously, and a construction of an RBPF approximate inference scheme. The experimental results in a real-world environment have confirmed our belief that directly modeling shared structures not only reduces computational cost, but also improves recognition accuracy when compared with the tree HHMM and the flat HMM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a coherent approach using the hierarchical HMM with shared structures to extract the structural units that form the building blocks of an education/training video. Rather than using hand-crafted approaches to define the structural units, we use the data from nine training videos to learn the parameters of the HHMM, and thus naturally extract the hierarchy. We then study this hierarchy and examine the nature of the structure at different levels of abstraction. Since the observable is continuous, we also show how to extend the parameter learning in the HHMM to deal with continuous observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hierarchical hidden Markov model (HHMM) is an extension of the hidden Markov model to include a hierarchy of the hidden states. This form of hierarchical modeling has been found useful in applications such as handwritten character recognition, behavior recognition, video indexing, and text retrieval. Nevertheless, the state hierarchy in the original HHMM is restricted to a tree structure. This prohibits two different states from having the same child, and thus does not allow for sharing of common substructures in the model. In this paper, we present a general HHMM in which the state hierarchy can be a lattice allowing arbitrary sharing of substructures. Furthermore, we provide a method for numerical scaling to avoid underflow, an important issue in dealing with long observation sequences. We demonstrate the working of our method in a simulated environment where a hierarchical behavioral model is automatically learned and later used for recognition.