42 resultados para Feedlot runoff


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A reliable hydrograph separation method is necessary for surface runoff modeling and hydrological studies. This paper investigates and compares the separation characteristics of two single-parameter digital filters, which are herein referred to as the one-parameter algorithm and the conceptual method. The application of the one-parameter algorithm was found to be restricted to low and medium baseflow separations, with a maximum separation limit of 50% of the total runoff hydrograph. The one-parameter algorithm was also observed to produce unrealistic sharp peaks under the peaks of the measured hydrograph when recession constant is smaller than 0.96. On the other hand, the conceptual method is applicable even for catchments fed largely by groundwater discharge. However, a reliable estimation of recession constant is a prerequisite for applying the conceptual method for large baseflow separations. Based on the hydrograph separation results, useful empirical relationships were developed for a partially urbanized watershed to estimate total runoff and direct runoff from the measured rainfall depth. The relationships between rainfall depth and total runoff depth and rainfall depth and direct runoff depth were found to be well represented by linear equations. The empirical relationships were then applied to estimate the long-term contribution of baseflow and surface runoff to total runoff at the study site. Baseflow was found to contribute about 58–61% of the annual total runoff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urban lakes are typically smaller, shallower, and more exposed to human activities than natural lakes. Although the effects of harmful algal blooms (HABs) associated with eutrophication in urban lakes has become a growing concern for water resources management and environmental protection, studies focussing on this topic in relation to urban lakes are rare and knowledge of the ecological dynamics and effective management strategies for controlling eutrophication in urban lakes is lacking. This study applied an integrated three-dimensional hydrodynamics-ecological model for a small shallow tropical urban lake in Singapore and evaluated various management scenarios to control eutrophication in the lake. It is found that in-lake treatment techniques including artificial destratification, sediment manipulation and algaecide addition are either ineffective or possess environmental concerns; while watershed management strategies including hydraulic flushing and inflow nutrients reduction are more effective and have posed less environmental concerns. In this study, inflow phosphorus reduction was found to be the best strategy after evaluating the advantages and drawbacks of the management strategies studied. Runoff from the watershed exerts significant influence on urban lakes and thus an integrated water resources management at the watershed level is critical for the control of eutrophication

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developing an efficient and accurate hydrologic forecasting model is crucial to managing water resources and flooding issues. In this study, response surface (RS) models including multiple linear regression (MLR), quadratic response surface (QRS), and nonlinear response surface (NRS) were applied to daily runoff (e.g., discharge and water level) prediction. Two catchments, one in southeast China and the other in western Canada, were used to demonstrate the applicability of the proposed models. Their performances were compared with artificial neural network (ANN) models, trained with the learning algorithms of the gradient descent with adaptive learning rate (ANN-GDA) and Levenberg-Marquardt (ANN-LM). The performances of both RS and ANN in relation to the lags used in the input data, the length of the training samples, long-term (monthly and yearly) predictions, and peak value predictions were also analyzed. The results indicate that the QRS and NRS were able to obtain equally good performance in runoff prediction, as compared with ANN-GDA and ANN-LM, but require lower computational efforts. The RS models bring practical benefits in their application to hydrologic forecasting, particularly in the cases of short-term flood forecasting (e.g., hourly) due to fast training capability, and could be considered as an alternative to ANN

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lake Pertobe wetland system is a semi-natural wetland that has been modified primarily for recreational use. However, this lake system receives stormwater from much of the central business district of Warrnambool City (Victoria, Australia) and serves as a buffer zone between the stormwater system and the Merri River and Merri Marine Sanctuary. This work considers the impact of stormwater inputs on Lake Pertobe and the effectiveness of the lake in protecting the associated marine sanctuary. Sediment contaminants (including heavy metals and polycyclic aromatic hydrocarbons (PAHs)) and water quality parameters within the lake, groundwater and stormwater system were measured. Water quality parameters were highly variable between stormwater drains and rain events. Suspended solids rapidly settled along open drains and shortly after entering the lake. Groundwater inputs increased both salinity and dissolved nitrogen in some stormwater drains. Some evidence of bioaccumulation of metals in the food chain was identified and sediment concentrations of several PAHs were very high. The lake acted as a sink for PAHs and some metals and reductions in Escherichia coli, biological oxygen demand and total phosphorus were observed, affording some protection to the associated marine sanctuary. Nutrient retention was inadequate overall and it was identified that managing the lake primarily as a recreational facility impacted on the effectiveness of stormwater treatment in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Water resources in Singapore are managed following the principles of a closed loop hydrologic cycle by one agency, the Public Utility Board (PUB), which promotes its management philosophy through the Four National Taps of Singapore program. The four national taps are: water from local catchment areas; imported water (from Malaysia); reused water (known as NEWater); and desalinated water. Given the uncertainty of water imports, the remaining three national taps have become increasingly important and this paper begins with a general overview of the innovative programs implemented by PUB in support of these three taps. Stormwater runoff is captured from two-thirds of Singapore’s land area and stored in reservoirs for subsequent use. Stormwater management is an important component of the catchment area tap and extensive low impact development (LID) implementation has become a priority through the ABC (Active, Beautiful, Clean) Waters Program. Examples of several ABC Waters projects are discussed. NEWater currently supplies 30% of the country’s demand and this is projected to increase to 50% by 2060. NEWater plants take treated wastewater through the additional steps of microfiltration, reverse osmosis and ultraviolet treatment for use primarily in industry, although a portion also is blended into the municipal reservoirs. Singapore’s single desalination plant currently meets 10% of its demand, with a second plant to be completed in 2013 that will more than double production. Also discussed are the results of recently completed pilot projects related to stormwater management including testing of E. coli in runoff from high density residential areas, a blind taste test and survey on acceptance of NEWater, and a survey of Singaporean understanding about stormwater management issues.Water resources in Singapore are managed following the principles of a closed loop hydrologic cycle by one agency, the Public Utility Board (PUB), which promotes its management philosophy through the Four National Taps of Singapore program. The four national taps are: water from local catchment areas; imported water (from Malaysia); reused water (known as NEWater); and desalinated water. Given the uncertainty of water imports, the remaining three national taps have become increasingly important and this paper begins with a general overview of the innovative programs implemented by PUB in support of these three taps. Stormwater runoff is captured from two-thirds of Singapore’s land area and stored in reservoirs for subsequent use. Stormwater management is an important component of the catchment area tap and extensive low impact development (LID) implementation has become a priority through the ABC (Active, Beautiful, Clean) Waters Program. Examples of several ABC Waters projects are discussed. NEWater currently supplies 30% of the country’s demand and this is projected to increase to 50% by 2060. NEWater plants take treated wastewater through the additional steps of microfiltration, reverse osmosis and ultraviolet treatment for use primarily in industry, although a portion also is blended into the municipal reservoirs. Singapore’s single desalination plant currently meets 10% of its demand, with a second plant to be completed in 2013 that will more than double production. Also discussed are the results of recently completed pilot projects related to stormwater management including testing of E. coli in runoff from high density residential areas, a blind taste test and survey on acceptance of NEWater, and a survey of Singaporean understanding about stormwater management issues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs face a crisis due to local and global anthropogenic stressors. A large proportion of the ~50% coral loss on the Great Barrier Reef has been attributed to outbreaks of the crown-of-thorns-seastar (COTS). A widely assumed cause of primary COTS outbreaks is increased larval survivorship due to higher food availability, linked with anthropogenic runoff . Our experiment using a range of algal food concentrations at three temperatures representing present day average and predicted future increases, demonstrated a strong influence of food concentration on development is modulated by temperature. A 2°C increase in temperature led to a 4.2–4.9 times (at Day 10) or 1.2–1.8 times (Day 17) increase in late development larvae. A model indicated that food was the main driver, but that temperature was an important modulator of development. For instance, at 5000 cells ml−1 food, a 2°C increase may shorten developmental time by 30% and may increase the probability of survival by 240%. The main contribution of temperature is to ‘push’ well-fed larvae faster to settlement. We conclude that warmer sea temperature is an important co-factor promoting COTS outbreaks.