47 resultados para Energy Requirements


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tried to unravel the possible links between the skewed predation risk in Uca tangeri (where large individuals are more at risk from avian predators) and size-dependent changes in the physiology and habitat choice of this fiddler crab species. Over a transect running from low to high in the tidal zone of a beach in Mauritania, the temperature profile at various depths in the substrate, the water-table level of seep water, salt concentration of seep water, depth of the aerobic level, operative temperatures on the surface, and size distribution of crabs were assessed. In addition, resting metabolic rates, Q10 and thermal and starvation tolerances were estimated. Going from low to high in the tidal zone, crab size and burrow depth increased. At the preferred burrowing depth, microclimatological conditions appeared to be equally favourable at all sites. At the surface, conditions were more favourable low in the tidal zone, where also food availability is sufficient to enable small crabs to forage in the vicinity of their burrows. Large crabs have higher energy requirements and are thereby forced to forage in flocks low in the tidal zone where food is probably more abundant. Low in the tidal zone, digging deeply is impossible as the aerobic layer is rather thin. Large crabs prefer living high in the tidal zone as (1) deep burrows ensure better protection against predators, (2) more time is available for digging holes and (3) the substrate is better suited for reproduction. Energy reserves in late summer ensured an average of 34 days of survival. It is argued that the allotment of energy to growth must be considerable even in reproducing animals; the rewards of growth being the disproportional increase in reproductive output with size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molting females of Monteiro's Hornbills (Tockus monteiri) seal themselves in nest cavities to breed until chicks are about half grown. To gain insight into the chronology of energy requirements of the Monteiro's Hornbill family unit in relation to this peculiar breeding strategy, we measured a number of ecological, physiological, and environmental variables during the Monteiro's Hornbill's breeding season. Those measurements included rates of energy expenditure of female Monteiro's Hornbills while in the nest cavity, characterizing their thermal environment, timing of egg laying, molt, hatching and fledging of chicks, as well as measuring clutch size and chick growth. Temperatures within the nest box varied between 12 and 39°C and did not affect the female energy expenditure. Female body mass and energy expenditure averaged 319 g and 5 W, respectively, at the start of concealment and decreased by on average 1.1 g day -1 and 0.05 W day -1 during at least the first 30 days of the 52-58 day concealment period. Clutch size varied between 1 and 8 and averaged 4.1 eggs, with eggs averaging only 66% of the mass predicted for a bird of this size. Over the range of chick ages at which the female might leave the nest, the predicted energy requirements for maintenance and tissue growth for a Monteiro's Hornbill chick increase sharply from 1.2 W at age 8 to 3.0 W at age 25. Reduction of the female energy requirement with time, the relatively low growth rate and therewith low energy requirements of Monteiro's Hornbill chicks, and an appropriate timing of the female's exodus from the nest cavity all aid in containing peak energy demands to levels that are sustainable for the food provisioning male.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy used in buildings is a major contributor to Australia’s energy consumption and associated environmental impacts. The advent of complex glazing systems such as double glazing, particularly in northern America and Europe, has partially closed a weak thermal link in the building envelope. In milder climates, however, building envelope features may not be as effective in life cycle energy terms, i.e. including the embodied energy of their manufacture. A net energy analysis compares the savings in operational energy to the additional requirements for embodied energy, in terms of the energy payback period and energy return on investment. The effectiveness of double glazing is determined for an Australian residential building. A wide range of building operation regimes was simulated. These results support the principle of installing double glazing in residential buildings in Melbourne, Australia, at least in terms of net primary energy savings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model of a yam package is established for a ring spinning system. The yarn layer, surface area, and mass of the yam package are formulated with respect to the diameters of the empty bobbin and full yarn package, yarn count, and yarn winding-on time. Based on the principles of dynamics and aerodynamics, models of the power requirements for overcoming the skin friction drag, increasing the kinetic energy of the yarn package (bobbin and wound yarn), and overcoming the yarn wind-on tension are developed. The skin friction coefficient on the surface of a rotating yam package is obtained from experiment. The power distribution during yam packaging is discussed based on a case study. The results indicate that overcoming the skin friction drag during yarn winding consumes the largest amount of energy. The energy required to overcome the yarn wind-on tension is also significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High energy consumption remains a key challenge for the widely used ring spinning system. Tackling this challenge requires a full understanding of the various factors that contribute to yarn tension and energy consumption during ring spinning. In this paper, we report our recent experimental and theoretical research on air drag, yarn tension and energy consumption in ring spinning. A specially constructed rig was used to simulate the ring spinning process; and yarn tension at the guide-eye was measured for different yarns under different conditions. The effect of yarn hairiness on the air drag acting on a rotating yarn package and on a ballooning yarn was examined. Models of the power requirements for overcoming the air drag, increasing the kinetic energy of the yarn package (bobbin and wound yarn) and overcoming the yarn wind-on tension were developed. The ratio of energy-consumption to yarn-production over a full yarn package was discussed. A program to simulate yarn winding in ring spinning was implemented, which can generate the balloon shape and predict yarn tension under a given spinning condition. The simulation results were verified with experimental results obtained from spinning cotton and wool yarns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-rise apartments provide 90% of the living requirements in Hong Kong. (Lam 1995) The construction material of these buildings is primarily concrete for both external wall and interior partitions with little or no thermal insulation. Due to the hot and humid climatic conditions and expectations of an ever-increasing standard of living, occupants are installing air-conditioning systems into their apartments. This has generated a tremendous electrical demand as well as an environmental (greenhouse gas emission) concern. This paper explores some of the low energy strategies that can be applied to this building typology. The effect of seven energy-saving strategies ranging from thermal insulation to different window systems and shading devices was investigated. The results show that there is the potential to reduce the annual cooling energy consumption and peak cooling load by 40% and 33% respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fully-connected mesh networks that can potentially be employed in a range of applications, are inherently associated with major deficiencies in interference management and network capacity improvement. The tree-connected (routing based) mesh networks used in today’s applications have major deficiencies in routing delays and reconfiguration delays in the implementation stage. This paper introduces a CDMA based fully-connected mesh network, which controls the transmission powers of the nodes in order to ensure that the communication channels remain interference-free and minimizes the energy consumption. Moreover, the bounds for the number of nodes and the spatial configuration are provided to ensures that the communication link satisfies the QoS (Quality of Service) requirements at all times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy consumption attributed to the residential sector makes up around 8% of the total consumption in Australia. Roughly a third of all houses built in Victoria are done so by the largest 20 builders. These volume builders keep costs down by offering a selection of ‘clone’ designs from which the client can choose, however they lose the site-specific customisation which is required for effective passive design in favour of a one-size-fits-all approach where designs are developed to a point where they can satisfy just the minimum requirements in a range of orientations and site locations. The Australian government has implemented regulations regarding the minimum efficiency standards for housing and these initiatives to limit the carbon emissions have brought the question of energy use to the table, yet are they enough? This paper will explore the concept of cloned house designs in terms of energy efficiency and optimal siting and through computer simulation, evaluate how a cloned house design performs under different site conditions in Victoria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy content of the deposited reserve tissue depended on the condition of the birds, since the energy required for body mass gain was low in lean birds and high in fat birds. Maintenance metabolism was relatively low compared to wader species wintering in temperate regions, suggested to be an adaptation towards reduced endogenous heat production, which may help in avoiding heat stress under tropical conditions. -from Authors

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. In a system where depletion drives a habitat shift, the hypothesis was tested that animals switch habitat as soon as the average daily net energy intake (or gain) drops below that attainable in the alternative habitat.

2. The study was performed in the Lauwersmeer area. Upon arrival during the autumn migration, Bewick's swans first feed on below-ground tubers of fennel pondweed on the lake, but subsequently switched to feeding on harvest remains in sugar beet fields.

3. The daily energy intake was estimated by multiplying the average time spent foraging per day with the instantaneous energy intake rate while foraging. In the case of pondweed feeding, the latter was estimated from the functional response and the depletion of tuber biomass. In the case of beet feeding, it was estimated from dropping production rate. Gross energy intake was converted to metabolizable energy intake using the assimilation as determined in digestion trials. The daily energy expenditure was estimated by the time-energy budget method. Energetic costs were determined using heart rate.

4. The daily gain of pondweed feeding at the median date of the habitat switch (i.e. when 50% of the swans had switched) was compared with that of beet feeding. The daily gain of beet feeding was calculated for two strategies depending on the night activity on the lake: additional pondweed feeding (mixed feeding) or sleeping (pure beet feeding).

5. The majority of the swans switched when the daily gain they could achieve by staying on the pondweed bed fell just below the average daily gain of pure beet feeders. However, mixed feeders would attain an average daily gain considerably above that of pondweed feeders. A sensitivity analysis showed that this result was robust.

6. We therefore reject the hypothesis that the habitat switch by swans can be explained by simple long-term energy rate maximization. State-dependency, predation risk, and protein requirements are put forward as explanations for the delay in habitat switch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract—
After a decade of extensive research on application-specific wireless sensor networks (WSNs), the recent development of information and communication technologies makes it practical to realize the software-defined sensor networks (SDSNs), which are able to adapt to various application requirements and to fully explore the resources of WSNs. A sensor node in SDSN is able to conduct multiple tasks with different sensing targets simultaneously. A given sensing task usually involves multiple sensors to achieve a certain quality-of-sensing, e.g., coverage ratio. It is significant to design an energy-efficient sensor scheduling and management strategy with guaranteed quality-of-sensing for all tasks. To this end, three issues are investigated in this paper: 1) the subset of sensor nodes that shall be activated, i.e., sensor activation, 2) the task that each sensor node shall be assigned, i.e., task mapping, and 3) the sampling rate on a sensor for a target, i.e., sensing scheduling. They are jointly considered and formulated as a mixed-integer with quadratic constraints programming (MIQP) problem, which is then reformulated into a mixed-integer linear programming (MILP) formulation with low computation complexity via linearization. To deal with dynamic events such as sensor node participation and departure, during SDSN operations, an efficient online algorithm using local optimization is developed. Simulation results show that our proposed online algorithm approaches the globally optimized network energy efficiency with much lower rescheduling time and control overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In cloud environments, IT solutions are delivered to users via shared infrastructure. One consequence of this model is that large cloud data centres consume large amounts of energy and produce significant carbon footprints. A key objective of cloud providers is thus to develop resource provisioning and management solutions at minimum energy consumption while still guaranteeing Service Level Agreements (SLAs). However, a thorough understanding of both system performance and energy consumption patterns in complex cloud systems is imperative to achieve a balance of energy efficiency and acceptable performance. In this paper, we present StressCloud, a performance and energy consumption analysis tool for cloud systems. StressCloud can automatically generate load tests and profile system performance and energy consumption data. Using StressCloud, we have conducted extensive experiments to profile and analyse system performance and energy consumption with different types and mixes of runtime tasks. We collected finegrained energy consumption and performance data with different resource allocation strategies, system configurations and workloads. The experimental results show the correlation coefficients of energy consumption, system resource allocation strategies and workload, as well as the performance of the cloud applications. Our results can be used to guide the design and deployment of cloud applications to balance energy and performance requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric vehicles (EVs) have recently gained much popularity as a green alternative to fossil-fuel cars and a feasible solution to reduce air pollution in big cities. The use of EVs can also be extended as a demand response tool to support high penetration of renewable energy (RE) sources in future smart grid. Based on the certainty equivalent adaptive control (CECA) principle and a customer participation program, this paper presents a novel control strategy using optimization technique to coordinate not only the charging but also the discharging of EV batteries to deal with the intermittency in RE production. In addition, customer charging requirements and schedules are incorporated into the optimization algorithm to ensure customer satisfaction, and further improve the control performance. The merits of this scheme are its simplicity, efficiency, robustness and readiness for practical applications. The effectiveness of the proposed control algorithm is demonstrated by computer simulations of a power system with high level of wind energy integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A criterion for selecting a coating for an energy pipeline is that the coating should have a suitable flexibility to meet the high strain demand during hydrostatic testing and during field bending. This requires knowledge of the level of strain demand for the pipeline, and also the maximum strain that could be
tolerated by the coating system. Whereas average strains imposed during manufacturing and construction are reasonably well predicted, there is insufficient understanding on the factors leading to localised deformation of the pipe. Significant work has been carried out in the past to develop tests for assessing
the coatings’ ability to handle a certain amount of strain based on bend testing, tensile testing and burst testing. However, there is a concern as to whether these tests properly represent localised micro-strains associated with construction activities including field bending and pressure testing, particularly pressure testing of pipelines designed for operation at 80% of specified minimum yield strength (SMYS). Consequently coatings considered "suitable" for modern pipelines may fail. The first issue discussed in this paper is main factors affecting strain localisation. The non-deterministic distributions of heterogeneities over the pipe provide a ground to consider the mechanisms of localisation as a stochastic process. An approach is proposed to quantify the maximum localised strain demand through cold field bending and hydrostatic experiments. Another issue discussed in this paper is the experimental assessment of coating flexibility under the effects of localised strains. Preliminary mandrel tests have been carried out to assess the uniformity of the imposed strain. Although mandrel testing has been shown to be a useful method for relative comparison of coating flexibility, it has several weaknesses that could significantly affect the reliability and reproducibility of the results.