37 resultados para Embodied energy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ratification of the Kyoto Protocol by most industrial nations will result in an international greenhouse emissions trading market by or before 2008. Calculating the quantity of embodied energy in commercial buildings has therefore taken on added significance because it is in the creation of energy that most greenhouse gas that causes global warming is released. For energy efficient commercial buildings in Australia, the embodied energy can typically represent between 10 and 20 years of operational energy. When greenhouse emissions trading is introduced in Australia the cost of energy will rise significantly, particularly electricity which relies primarily on burning fossil fuels for generation. This will affect not only the operating energy costs of buildings (light, power & heating/cooling) but also the cost of building materials and construction. Early estimates of the potential cost of future greenhouse emission permits in Australia vary between $IO/tonne to $180Itonne. This cost would be imposed primarily on the producers of energy and passed on by them to consumers via higher energy costs. For a typical commercial building this could lead to an increase in the total procurement cost of buildings of up to 20% due to the energy embodied during the construction or refurbishment of the building. To assist in evaluating these potential cost increases McKean & Park, Sinclair Knight Merz and Deakin University have developed a web-based Carbon Cost Calculator for commercial buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ln Australia in the 1950s, the average house size was approximately 100 mz. By 2008, the average size of a new house had risen to approximately 238 mz i.e. an increase of nearly 140%. Over the same period, occupancy levels have fallen by nearly one third from 3.7 to 2.5 persons per household. The aim of this paper is to contrast the total and per capita resource demand (direct and embodied energy, water and materials) for two houses typical of their respective era and draw some conclusions from the results. Using the software Autodesk Revit Architecture and drawings for typical 1950 and 2009 houses, the material quantities for these dwellings have been determined. Using known coefficients, the embodied energy and water in the materials have been calculated. Operating energy requirements have been calculated using NatHERS estimates. Water requirements have been calculated using historical and current water data. The greenhouse gas emissions associated with the resource use have also been calculated using established coefficients. Results are compared on a per capita basis. The research found that although the energy to operate the modern house and annual water use had fallen, the embodied energy and associated greenhouse gas emissions from material use had risen significantly. This was driven by the size of the house and the change in construction practices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The impacts on the environment from human activities are of increasing concern. The need to consider the reduction in energy consumption is of particular interest, especially in the construction and operation of buildings, which accounts for between 30 and 40% of Australia's national energy consumption. Much past and more recent emphasis has been placed on methods for reducing the energy consumed in the operation of buildings. With the energy embodied in these buildings having been shown to account for an equally large proportion of a building's life cycle energy consumption, there is a need to look at ways of reducing the embodied energy of buildings and related products. Life cycle assessment (LCA) is considered to be the most appropriate tool for assessing the life cycle energy consumption of buildings and their products. The life cycle inventory analysis (LCIA) step of a LCA, where an inventory of material and energy inputs is gathered, may currently suffer from several limitations, mainly concerned with the use of incomplete and unreliable data sources and LCIA methods. These traditional methods of LCIA include process-based and input-output-based LCIA. Process-based LCIA uses process specific data, whilst input-output-based LCIA uses data produced from an analysis of the flow of goods and services between sectors of the Australian economy, also known as input-output data. With the incompleteness and unreliability of these two respective methods in mind, hybrid LCIA methods have been developed to minimise the errors associated with traditional LCIA methods, combining both process and input-output data. Hybrid LCIA methods based on process data have shown to be incomplete. Hybrid LCIA methods based on input-output data involve substituting available process data into the input-output model minimising the errors associated with process-based hybrid LCIA methods. However, until now, this LCIA method had not been tested for its level of completeness and reliability. The aim of this study was to assess the reliability and completeness of hybrid life cycle inventory analysis, as applied to the Australian construction industry. A range of case studies were selected in order to apply the input-output-based hybrid LCIA method and evaluate the subsequent results as obtained from each case study. These case studies included buildings: two commercial office buildings, two residential buildings, a recreational building; and building related products: a solar hot water system, a building integrated photovoltaic system and a washing machine. The range of building types and products selected assisted in testing the input-output-based hybrid LCIA method for its applicability across a wide range of product types. The input-output-based hybrid LCIA method was applied to each of the selected case studies in order to obtain their respective embodied energy results. These results were then evaluated with the use of a number of evaluation methods. These evaluation methods included an analysis of the difference between the process-based and input-output-based hybrid LCIA results as an evaluation of the completeness of the process-based LCIA method. The second method of evaluation used was a comparison between equivalent process and input-output values used in the input-output-based hybrid LCIA method as a measure of reliability. It was found that the results from a typical process-based LCIA and process-based hybrid LCIA have a large gap when compared to input-output-based hybrid LCIA results (up to 80%). This gap has shown that the currently available quantity of process data in Australia is insufficient. The comparison between equivalent process-based and input-output-based LCIA values showed that the input-output data does not provide a reliable representation of the equivalent process values, for material energy intensities, material inputs and whole products. Therefore, the use of input-output data to account for inadequate or missing process data is not reliable. However, as there is currently no other method for filling the gaps in traditional process-based LCIA, and as input-output data is considered to be more complete than process data, and the errors may be somewhat lower, using input-output data to fill the gaps in traditional process-based LCIA appears to be better than not using any data at all. The input-output-based hybrid LCIA method evaluated in this study has shown to be the most sophisticated and complete currently available LCIA method for assessing the environmental impacts associated with buildings and building related products. This finding is significant as the construction and operation of buildings accounts for a large proportion of national energy consumption. The use of the input-output-based hybrid LCIA method for products other than those related to the Australian construction industry may be appropriate, especially if the material inputs of the product being assessed are similar to those typically used in the construction industry. The input-output-based hybrid LCIA method has been used to correct some of the errors and limitations associated with previous LCIA methods, without the introduction of any new errors. Improvements in current input-output models are also needed, particularly to account for the inclusion of capital equipment inputs (i.e. the energy required to manufacture the machinery and other equipment used in the production of building materials, products etc.). Although further improvements in the quantity of currently available process data are also needed, this study has shown that with the current available embodied energy data for LCIA, the input-output-based hybrid LCIA appears to provide the most reliable and complete method for use in assessing the environmental impacts of the Australian construction industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper explores design considerations for energy efficiency in lunar habitats. It considers several previous lunar energy studies in regards to energy types and stages of energy requirements. If we are to obtain true sustainability in energy processes, we will need to design according to the principles “exergy”, considering both the first and the second laws of thermodynamics in a holistic and thorough evaluation of energy capture, transformation, and use. Such an evaluation will ascertain the source of energy, its processing and energy potential stages, as well as the task required. Traditional designs of facility thermal systems are frequently extremely wasteful: they dramatically increase both first costs and operating costs because they treat heating and cooling systems as separate entities, instead of an integrated energy system. Energy processes, the state of energy required to do a particular task, the embodied energy to complete or manufacture an object, and the wasted energy released are all important to conservation and obtaining an efficient and effective use (quality) of energy. If the regulation of energy processes is a concern in terrestrial habitation, it should be even more so for extra-terrestrial habitation where there is little margin for waste of any sort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Australians were recently awarded the dubious honour of building the largest homes in the world. Our new homes are now seven percent larger than those in the United States and nearly three times larger than those in the United Kingdom. At the same time, the price of an average residential property is now five times what it was 20 years ago. Although incomes have risen over the same period, they have not kept pace with rising house prices. In terms of disposable income, the cost of housing has almost doubled. While traditional housing affordability is measured in terms of house prices and incomes, a broader and more encompassing perspective also indicates that we can no longer ‘afford’ to build houses as we have done in the past. The environmental impact of modern Australian housing is significant. Australians have resisted the need for increased urban density as their capital city populations grow and new houses have been built on the outskirts of the existing cities, encroaching on the greenwedge and agricultural lands, destroying and degrading existing fauna and flora. The houses built have increased carbon emissions because of their size, embodied energy and reliance on the motor car. This paper discusses the environmental ‘affordability’ of current Australian housing and argues that this must be considered alongside traditional affordability criteria so that a more holistic approach to the issues is adopted.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Residential housing is often evaluated against single or at best a limited number of similar criteria. These include quantifiable indicators such as energy use and its associated greenhouse gas emissions. It might also include material consumption from an embodied energy or resource use perspective. Social factors or qualitative indicators may be evaluated but are rarely placed or juxtaposed alongside these quantifiable indicators. A one-dimensional approach will be limiting because sustainable development includes both environmental and social factors. This paper describes the methodologies that have been developed to assess housing developments against five quite different criteria. These are: energy use, resource use, neighbourhood character, neighbourhood connectedness and diversity. In each case, high and low sustainability practice has been identified so that ranking is possible. These methodologies have then been tested by evaluating a typical precinct (approximately 400 m by 400 m) of a 1970-80s housing development in a suburb of Geelong. The rankings of the particular precinct have then been combined in a visual way to assist in the evaluation of the housing in a more holistic way. The results of this evaluation method are presented, along with a discussion of the strengths and weaknesses of the methodologies. The research is the outcome of collaboration by a cross-disciplinary group of academics within Deakin’s School of Architecture and Building.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concern about the growth of greenhouse gas emissions in Victoria has prompted the introduction of legislation to improve the thermal performance of the residential building envelope. Unfortunately, the size of the house is not considered in the rating tool that underpins the legislation. The energy embodied in the constructional materials is also not considered although it too is directly related to the size of the house. Another intrinsic factor relating residential housing energy and greenhouse gas emissions is the location of the residence and the travel preferences of the homeowner. The relationship between the operational, embodied and travel energy associated with a typical residential scenario in Melbourne over the last 50 years is examined in this paper. The analysis found that by the year 2000, the energy associated with work-related travel (44%) now exceeds the operational energy (37%). In terms of greenhouse gas emissions, the contribution from travel energy is almost double that from operational energy (28%).