47 resultados para Electromagnetic filter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the robust tracking control problem for a bipolar electromagnetic-levitation precise-position system. The dynamic model of the precise-position device is derived by conducting a thorough analysis on the nonlinear electromagnetic forces. Conventional sliding-mode control and terminal sliding-mode control strategies are developed to guarantee asymptotic and finite-time tracking capabilities of the closed-loop system. A lumped uncertainty estimator is proposed to estimate the system uncertainties. The estimated information is then used to construct a smooth uniformly ultimately bounded sliding-mode control. An exact estimator is also proposed to exactly estimate the unknown uncertainties in finite time. The output of the exact estimator is used to design a continuous chattering free terminal sliding-mode control. The time taken for the closed-loop system to reach zero tracking error is proven to be finite. Experiment results are presented, using a real time digital-signal-processor (DSP) based electromagnetic-levitation system to validate the analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemodynamic models have a high potential in application to understanding the functional differences of the brain. However, full system identification with respect to model fitting to actual functional magnetic resonance imaging (fMRI) data is practically difficult and is still an active area of research. We present a simulation based Bayesian approach for nonlinear model based analysis of the fMRI data. The idea is to do a joint state and parameter estimation within a general filtering framework. One advantage of using Bayesian methods is that they provide a complete description of the posterior distribution, not just a single point estimate. We use an Auxiliary Particle Filter adjoined with a kernel smoothing approach to address this joint estimation problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work demonstrates a novel Bayesian learning approach for model based analysis of Functional Magnetic Resonance (fMRI) data. We use a physiologically inspired hemodynamic model and investigate a method to simultaneously infer the neural activity together with hidden state and the physiological parameter of the model. This joint estimation problem is still an open topic. In our work we use a Particle Filter accompanied with a kernel smoothing approach to address this problem within a general filtering framework. Simulation results show that the proposed method is a consistent approach and has a good potential to be enhanced for further fMRI data analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A circular planar inverted-F antenna (PIFA) is designed and simulated at the industrial, scientific, and medical (ISM) band of 915 MHz for energy harvesting in a head-mountable deep brain stimulation device. Moreover, a rectifier is designed, and also the interaction of the PIFA with a rat head model is investigated. In the proposed PIFA, the top radiating layer is meandered, and a substrate of FR-4 is used. The radius and the height of the antenna are 10 mm and 1.8 mm, respectively. The bottom conductive layer works as a ground plate, and a superstrate of polyethylene reduces the electromagnetic penetration into the rat head. The resonance frequency of the designed antenna is 915 MHz with a bandwidth of 18 MHz at the return loss of -10 dB in free space. The antenna parameters (e.g. reflection coefficient, gain, radiation efficiency), electric field distribution, and SAR value are evaluated within a seven-layer rat head model by using the finite difference time domain EM simulation software XFdtd. The interactions of the antenna and the rat head model are studied in both functional and biological aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reliable prediction of the total runoff hydrograph is necessary for water resources management. This study investigates two approaches to generate total runoff hydrograph by adding baseflow to direct runoff hydrographs. The first approach uses a method, derived from a digital filter algorithm for hydrograph separation, to generate baseflow hydrographs from direct runoff hydrographs. The method appears to perform well in producing the overall shape of the total runoff hydrographs and the acceptable mass balance errors for a year of water cycle. For application, the recession baseflow constant needs to be estimated reliably and the initial baseflow could be approximated to the long-term mean dry weather flow. The second approach assumes a constant baseflow rate. Although this approach is still capable of producing the overall hydrograph shape, it yields high mass balance errors in the total runoff hydrographs for both monthly and long-term periods. Further analysis shows that two-third of the mass balance errors are contributed from periods with direct runoff, implying that the constant baseflow assumption could introduce significant errors into the computations of total runoff hydrograph

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless ad hoc networks, especially in the hostile environment, are vulnerable to traffic analysis which allows the adversary to trace the routing messages and the sensitive data packets. Anonymity mechanism in ad hoc networks is a critical securing measure method employed to mitigate these problems. In this paper, we propose a novel secure and anonymous source routing protocol, called SADSR, based on Dynamic Source Routing (DSR) for wireless ad hoc networks. In the proposed scheme, we use the pseudonym, pseudonym based cryptography and the bloom filter to establish secure and anonymous routing in wireless ad hoc networks. Compared to other anonymous routing protocol, SADSR is not only anonymous but also the secure in the routing discover process and data transmission process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive filters are now becoming increasingly studied for their suitability in application to complex and non-stationary signals. Many adaptive filters utilise a reference input, that is used to form an estimate of the noise in the target signal. In this paper we discuss the application of adaptive filters for high electromyography contaminated electroencephalography data. We propose the use of multiple referential inputs instead of the traditional single input. These references are formed using multiple EMG sensors during an EEG experiment, each reference input is processed and ordered through firstly determining the Pearson’s r-squared correlation coefficient, from this a weighting metric is determined and used to scale and order the reference channels according to the paradigm shown in this paper. This paper presents the use and application of the Adaptive-Multi-Reference (AMR) Least Means Square adaptive filter in the domain of electroencephalograph signal acquisition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

  Remote human activity monitoring is critical and essential in physiotherapy with respect to the skyrocketing healthcare expenditure and the fast aging population. One of frequently used method to monitor human activity is wearing inertial sensors since it is low-cost and accurate. However, the measurements of those sensors are able only to estimate the orientation and rotation angles with respect to actual movement angles, because of differences in the body’s co-ordination system and the sensor’s co-ordination system. There were numerous studies being conducted to improve the accuracy of estimation, though there is potential for further discussions on improving accuracy by replacing heavy algorithms to less complexity. This research is an attempt to propose an adaptive complementary filter for identifying human upper arm movements. Further, this article discusses a feasibility of upper arm rehabilitation using the proposed adaptive complementary filter and inertial measurement sensors. The proposed algorithm is tested with four healthy subjects wearing an inertial sensor against gold standard, which is the VICON system. It demonstrated root mean squared error of 8.77◦ for upper body limb orientation estimation when compared to gold standard VICON optical motion capture system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—Nowadays, classical washout filters are extensively used in commercial motion simulators. Even though there are several advantages for classical washout filters, such as short processing time, simplicity and ease of adjustment, they have several shortcomings. The main disadvantage is the fixed scheme and parameters of the classical washout filter cause inflexibility of the structure and thus the resulting simulator fails to suit all circumstances. Moreover, it is a conservative approach and the platform cannot be fully exploited. The aim of this research is to present a fuzzy logic approach and take the human perception error into account in the classical motion cueing algorithm, in order to improve both the physical limits of restitution and realistic human sensations. The fuzzy compensator signal is applied to adjust the filtered signals on the longitudinal and rotational channels online, as well as the tilt coordination to minimize the vestibular sensation error below the human perception threshold. The results indicate that the proposed fuzzy logic controllers significantly minimize the drawbacks of having fixed parameters and conservativeness in the classical washout filter. In addition, the performance of motion cueing algorithm and human perception for most occasions is improved.