35 resultados para Electrical power - Distribution


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper makes use of the idea of prediction intervals (PIs) to capture the uncertainty associated with wind power generation in power systems. Since the forecasting errors cannot be appropriately modeled using distribution probability functions, here we employ a powerful nonparametric approach called lower upper bound estimation (LUBE) method to construct the PIs. The proposed LUBE method uses a new framework based on a combination of PIs to overcome the performance instability of neural networks (NNs) used in the LUBE method. Also, a new fuzzy-based cost function is proposed with the purpose of having more freedom and flexibility in adjusting NN parameters used for construction of PIs. In comparison with the other cost functions in the literature, this new formulation allows the decision-makers to apply their preferences for satisfying the PI coverage probability and PI normalized average width individually. As the optimization tool, bat algorithm with a new modification is introduced to solve the problem. The feasibility and satisfying performance of the proposed method are examined using datasets taken from different wind farms in Australia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For multiple heterogeneous multicore server processors across clouds and data centers, the aggregated performance of the cloud of clouds can be optimized by load distribution and balancing. Energy efficiency is one of the most important issues for large-scale server systems in current and future data centers. The multicore processor technology provides new levels of performance and energy efficiency. The present paper aims to develop power and performance constrained load distribution methods for cloud computing in current and future large-scale data centers. In particular, we address the problem of optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers. Our strategy is to formulate optimal power allocation and load distribution for multiple servers in a cloud of clouds as optimization problems, i.e., power constrained performance optimization and performance constrained power optimization. Our research problems in large-scale data centers are well-defined multivariable optimization problems, which explore the power-performance tradeoff by fixing one factor and minimizing the other, from the perspective of optimal load distribution. It is clear that such power and performance optimization is important for a cloud computing provider to efficiently utilize all the available resources. We model a multicore server processor as a queuing system with multiple servers. Our optimization problems are solved for two different models of core speed, where one model assumes that a core runs at zero speed when it is idle, and the other model assumes that a core runs at a constant speed. Our results in this paper provide new theoretical insights into power management and performance optimization in data centers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrostatic Precipitators (ESP) are the most reliable and industrially used control devices to capture fine particles for reducing exhaust emission. Its efficiency is 99% or more. However, capturing submicron particles which are hazardous is still a problem as it involves complex flow phenomena and ESP design limitations. In this study, the effect of baffles on flow distribution inside the ESP is investigated computationally. Baffles are expected to increase the residence time of flue gas which helps to collect more particles into the collector plates, and hence increase the collection efficiency of an ESP. Besides, the placement of a baffle is likely to cause swirling of flue gas and hence sub-micron particles move towards the collector plate due to eccentric and electrostatic force. Therefore, the effects of position, shape and thickness of the baffles on collection efficiency which are also important for ESP design are reported in this study. The fluid flow distribution has been modelled using computational fluid dynamics (CFD) software Fluent and the result and outcome are presented and discussed. The result shows that baffles have significant influence on fluid flow pattern and the efficiency of ESP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Over the past decade, the growing demand of Grid-connected photo voltaic (GCPV) system has been increasing due to an extensive use of renewable energy technologies for sustainable power generation and distribution. High-penetrated GCPV systems enhance the operation of the network by improving the voltage levels and reducing the active power losses along the length of the feeder. This paper aims to investigate the voltage variations and Total Harmonic Distortion (THD) of a typical GCPV system modelled in Power system simulator, PSS SINCAL with the change of level of PV integrations in a Low Voltage (LV) distribution network. Five different case studies are considered to investigate the impact of PV integrations on LV nodes and the corresponding voltage variations and harmonics. In addition, this paper also explores and benchmarks the voltage improvement techniques by implementing On Load Tap Changer (OLTC) with respective to the main transformer and addition of Shunt Capacitor (SC) at appropriate node points in LV network,

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This chapter presents an unbalanced multi-phase optimal power flow (UMOPF) based planning approach to determine the optimum capacities of multiple distributed generation units in a distribution network. An adaptive weight particle swarm optimization algorithm is used to find the global optimum solution. To increase the efficiency of the proposed scheme, a co-simulation platform is developed. Since the proposed method is mainly based on the cost optimization, variations in loads and uncertainties within DG units are also taken into account to perform the analysis. An IEEE 123 node distribution system is used as a test distribution network which is unbalanced and multi-phase in nature, for the validation of the proposed scheme. The superiority of the proposed method is investigated through the comparisons of the results obtained that of a Genetic Algorithm based OPF method. This analysis also shows that the DG capacity planning considering annual load and generation uncertainties outperform the traditional well practised peak-load planning.