69 resultados para Dynamic strain aging (DSA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (ε C,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on ε C,UFF. The multiple deformations in the nonrecrystallization region significantly reduced ε C,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach was used to produce an ultrafine grain structure in low carbon steels with a wide range of hardenability. This included warm deformation of supercooled austenite followed by reheating in the austenite region and cooling (RHA). The ultrafine ferrite structure was independent of steel composition. However, the mechanism of ferrite refinement hanged with the steel quench hardenability. In a relatively low hardenable steel, the ultrafine structure was produced through dynamic strain-induced transformation, whereas the ferrite refinement was formed by static transformation in steels with high quench hardenability. The use of a model Ni–30Fe austenitic alloy revealed that the deformation temperature has a strong effect on the nature of the intragranular defects. There was a transition temperature below which the cell dislocation structure changed to laminar microbands. It appears that the extreme refinement of ferrite is due to the formation of extensive high angle intragranular defects at these low deformation temperatures that then act as sites for static transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major challenge for thermomechanical processing is to extend grain refinement towards lower average grain sizes. However, there is also a need to provide a better understanding of the mechanisms through which the refinement processes proceed. Many recent proposals for advanced thermomechanical processing rely on the dynamic strain induced transformation (DSIT), and the dynamic recrystallisation of austenite as the main refinement mechanisms. These mechanisms are still not fully understood and their clarification can be expected to lead to even greater levels of refinement. The current review examines the roles of ferrite recrystallisation , DSIT and initial austenite grain size. It is shown that although the ferrite recrystallisation mechanism in DSIT has certain similarities with the well known continuous dynamic recrystallisation (CDRX), it is significantly affected by the transformed ferrite grain size. Also, reducing the initial austenite grain size increases the recrystallisation rate in the strain dependent as well as strain independent regions. These results show that the traditional concept of metadynamic recrystallisation is insufficient to explain the changes in grain size following deformation. An alternative explanation is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a descriptive model to explain the mechanisms involved in the development of ultrafine grained structure in steels through dynamic strain induced transformation. The model considers the microstructural evolution during and after deformation as well as the role of different process variables. A key factor is the competition between nucleation and growth, where it is shown that many potential nuclei can be lost under certain conditions leading to a mixed or coarser grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel approach was used to produce an ultrafine grain structure in low carbon steels with a wide range of hardenability. This included warm deformation of supercooled austenite followed by reheating in the austenite region and cooling (RHA). The ultrafine ferrite structure was independent of steel composition. However, the mechanism of ferrite refinement changed with the steel quench hardenability. In a relatively low hardenable steel, the ultrafine structure was produced through dynamic strain induced transformation, whereas the ferrite refinement was formed by static transformation in steels with high quench hardenability. The use of a model Ni-30Fe austenitic alloy revealed that the deformation temperature has a strong effect on the nature of the intragranular defects. There was a transition temperature below which the cell dislocation structure changed to laminar microbands. It appears that the extreme refinement of ferrite is due to the formation of extensive high angle intragranular defects at these low deformation temperature that then act as sites for static transformation. © 2008 World Scientific Publishing Company.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution of dynamic ferrite softening in a plain-carbon steel was investigated by torsion tests during warm deformation at 810 °C, in the two-phase (ferrite + austenite) region, and strain rate of 0.1 s−1 with different strains up to 50. The warm flow behaviour and ferrite microstructural parameters, such as grain size, misorientation angle across ferrite/ferrite boundaries, and the fraction of high-angle and low-angle grain/subgrain boundaries were quantified using electron back scatter diffraction. The results show that with increasing strain up to not, vert, similar2, the ferrite grain size and fraction of high-angle boundaries rapidly decrease and the fraction of low-angle boundaries increases. However, these parameters remain approximately unchanged with increasing strain from not, vert, similar2 to 50. The dynamic softening mechanism observed during large strain ferritic deformation is explained by dynamic recovery and continuous dynamic recrystallization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The osteogenicity of a given exercise may be estimated by calculating an osteogenic index (OI) consisting of magnitude and rate of strain. Volleyball involves repetitive jumping and requires high power output and thus may be expected to be beneficial to bone and performance. The purpose of the present study was to examine if habitual volleyball playing is reflected in OI. Ten elderly habitual volleyball players [age 69.9 (SD 4.4) years] and ten matched controls volunteered [age 69.7 (4.2) years] as subjects. Distal tibia (d), tibial mid-shaft (50) and femoral neck (F) bone characteristics were measured using pQCT and DXA. To estimate skeletal rigidity, cross-sectional area (ToA50), and compressive (BSId) and bending strength indices (SSImax50) were calculated. Maximal performance was assessed with eccentric ankle plantar flexion, isometric leg press and countermovement jump (CMJ). A fast Fourier transform (FFT) was calculated from the acceleration of the center of mass during the CMJ. Maximal acceleration (MAG) and mean magnitude frequency (MMF) were selected to represent the constituents of OI. OI was calculated as the sum of the products of magnitudes and corresponding frequencies. Volleyball players had 7% larger ToA50 and 37% higher power in CMJ, 15% higher MAG and 36% higher OI (P B 0.047) than the matched controls. No difference was observed in leg press, plantar flexion or the MMF (P C 0.646). In conclusion, habitual volleyball players may be differentiated from their matched peers by their dynamic jumping performance, and the differences are reflected in the magnitude but not rate of loading.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The development behaviors of ultrafine grains (UFGs) due to continuous dynamic recrystallization (cDRX) were investigated in hot compression of a Mg-4Y-2Nd-0.2Zn-0.5Zr alloy pretreated in solution and subsequently peak-aging. In the aging sample containing statically precipitated particles (SPPs), the occurrence of cDRX starts to take place at medium to high strains, and finally a stable size of UFGs are fully developed in a whole volume. In the as-solution sample with no SPPs, by contrast, the size of UFGs evolved increases rapidly at lower strains, slowly at medium strains and then finally shows a bimodal distribution in high strain. In the latter, smaller grains accompanying with an incomplete formation of UFGs are developed by any effect of dynamically precipitated particles (DPPs). The microtexture evolved is effectively randomized in the regions of UFGs, leading to the formation of a weaker texture. The tensile elongation of the aging sample, with SPPs and fully developed UFGs, was around 17.4%. This was much higher than that of the as-solution one, with no SPPs and incompletely developed UFGs, that was 11.8%, which might result from the more randomized texture due to fully developed UFGs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general relationship between the kinetics of dynamic and static recrystallization is developed. It is predicted that conventional dynamic recrystallization will occur whenever the deformation time exceeds the adjusted start time for static recrystallization. This approach is verified using data for austenite and lead. It is then applied to current and previous work on ferrite. The model provides support for the contention that conventional dynamic recrystallization occurs in low carbon ferrite if deformation is carried out at high temperatures and low strain rates. In the present work, which was carried out at 700 °C, evidence for dynamic recrystallization was observed for strain rates less than around 0.01 s−1. At higher strain rates, the model predicts a critical strain for the onset of dynamic recrystallization that exceeds the critical strain for the beginning of the recovery steady-state region. While the model allows dynamic recrystallization to begin in this region, the critical strain for its onset is expected to increase rapidly with increasing strain rate and decreasing temperature once steady state has been reached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most fibers are irregular, and they are often subjected to rapid straining during mechanical processing and end-use applications. In this paper, the effect of fiber dimensional irregularities on the dynamic tensile behavior of irregular fibers is examined, using the finite element method (FEM). Fiber dimensional irregularities are simulated with sine waves of different magnitude (10%, 30% and 50% level of diameter variation). The tensile behavior of irregular fibers is examined at different strain rates (333%/sec, 3,333%/sec and 30,000%/sec). The breaking load and breaking extension of irregular fibers at different strain rates are then calculated from the finite element model. The results indicate that strain rate has a significant effect on the dynamic tensile behavior of an irregular fiber, and that the position of the thinnest segment along the fiber affects the simulation results markedly. Under dynamic conditions, an irregular fiber does not necessarily break at the thinnest segment, which is different from the quasi-static results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grain refinement during and after hot isothermal deformation of a medium carbon steel has been investigated. The average austenite grain size decreased with an increase in strain for the hot deformed and recrystallised material, with refinement extending beyond the strain for the peak stress. A window of strain that corresponds to transition from classical static to metadynamic recrystallisation was observed in respect to the recrystallised material. Within this post-dynamic transition window the strain at which strain independent softening occurs was different for different volume fractions of the recrystallised material. This led to a new terminology corresponding to initiation of strain independent softening. For the alloy of this study, strain independent softening for the start of post-deformation recrystallisation occurred near the strain to the peak stress. The strain corresponding to complete metadynamic recrystallisation, which was defined as when all levels of recrystallisation were strain independent, was much greater than the strain for the peak stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The post-deformation softening behaviour of austenite has been studied for various compositions and deformation conditions. The strain at which the transition from strain dependent to strain independent post-deformation softening behaviour occurs (ε*) has been found to coincide closely with the strain to the peak stress (εp) under certain conditions but not under others. It has been proposed that the relationship between ε* and εp may be described geometrically using the initial grain size and the dynamically recrystallised grain size.