64 resultados para Distribution power systems restoration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fossil fuel based power generation is and will still be the back bone of our world economy, albeit such form of power generation significantly contributes to global CO2 emissions. Solar energy is a clean, environmental friendly energy source for power generation, however solar photovoltaic electricity generation is not practical for large commercial scales due to its cost and high-tech nature. Solar thermal is another way to use solar energy to generate power. Many attempts to establish solar (solo) thermal power stations have been practiced all over the world. Although there are some advantages in solo solar thermal power systems, the efficiencies and costs of these systems are not so attractive. Alternately by modifying, if possible, the existing coal-fired power stations to generate green sustainable power, a much more efficient means of power generation can be reached. This paper presents the concept of solar aided power generation in conventional coal-fired power stations, i.e., integrating solar (thermal) energy into conventional fossil fuelled power generation cycles (termed as solar aided thermal power). The solar aided power generation (SAPG) concept has technically been derived to use the strong points of the two technologies (traditional regenerative Rankine cycle with relatively higher efficiency and solar heating at relatively low temperature range). The SAPG does not only contribute to increase the efficiencies of the conventional power station and reduce its emission of the greenhouse gases, but also provides a better way to use solar heat to generate the power. This paper presents the advantages of the SAPG at conceptual level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance is normally characterized as a set of behaviours located in and belonging to change recipients. Such behaviours are seen to thwart the legitimate aims of both change strategists and the change agents who implement systems and the associated organisational change on the strategists' behalf. However, results from our case study research indicate that resistance can be a property not only of change recipients’ behaviour, but also of change agents and change strategists. The resistance behaviours identified included the failure to follow a prescribed corporate method and template, a refusal to help or listen, a refusal to fix known problems, the display of an adversarial, confrontational, and/or condescending attitude, subversiveness, a poor work ethic, and a refusal to meet requests. This paper argues for a revised conceptualization of resistance as a behaviour that can be demonstrated by any IT project stakeholders, that cannot be divorced from considerations of power in the IT project context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantification of uncertainties associated with wind power generation forecasts is essential for optimal management of wind farms and their successful integration into power systems. This paper investigates two neural network-based methods for direct and rapid construction of prediction intervals (PIs) for short-term forecasting of power generation in wind farms. The lower upper bound estimation and bootstrap methods are used to quantify uncertainties associated with forecasts. The effectiveness and efficiency of these two general methods for uncertainty quantification is examined using twenty four month data from a wind farm in Australia. PIs with a confidence level of 90% are constructed for four forecasting horizons: five, ten, fifteen, and thirty minutes. Quantitative measures are applied for objective evaluation and unbiased comparison of PI quality. Demonstrated results indicate that reliable PIs can be constructed in a short time without resorting to complicate computational methods or models. Also quantitative comparison reveals that bootstrap PIs are more suitable for short prediction horizon, and lower upper bound estimation PIs are more appropriate for longer forecasting horizons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Australia is one of the most lightning prone area on earth. Lightning strikes have been identified as one of the most common cause of energy pipeline damage in Australia. Therefore, a suitable protection schemes and mitigation strategies against lighting strike damage is very important for Australian pipeline industry. There are a number of research on lighting protection of establishment such as, power systems, buildings, and telecommunications systems, however, very few publications could be found which discuss about protection of pipeline from lightning strike. Assessment of effects in buried pipeline, due to lighting strikes is important. Existing models do not account adequately the effect of the characteristics of soil breakdown channels intercepted by the buried object. This paper aims to investigate the characteristics of lightning current on metal object under the soil of strike point so that lighting attachment to energy pipeline could be understand and a protection technique could be developed. Along with lightning current characteristics, lightning attachment process, distribution method, soil resistivity, propagation of lightning current in soil with a buried pipeline, pipeline electrical properties and other related areas and technologies is explored. The study shows that though there are some research on characteristics of induced on simple buried structures like narrow telephone cable or residential gas pipe, but no substantial research have been done on large comparatively complex structures like buried energy pipelines. Also dynamic behavior of soil and the object to be protected not been considered in protections schemes and experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous usage of fossil fuels and other conventional resources to meet the growing demand has resulted in in-creased energy crisis and greenhouse gas emissions. Hence, it is essential to use renewable energy sources for more reliable, effective, sustainable and pollution free transmission and distribution networks. Therefore, to facilitate large-scale integration of renewable energy in particular wind and solar photovoltaic (PV) energy, this paper presents the feasibility analysis for semi-arid climate and finds the most suitable places in North East region of Victoria for re-newable energy generation. For economic and environmental analysis, Hybrid Optimization Model for Electric Re-newables (HOMER) has used to investigate the prospects of wind and solar energy considering the Net Present Cost (NPC), Cost of Energy (COE) and Renewable fraction (RF). Six locations are selected from North East region of Victo-ria and simulations are performed. From the feasibility analysis, it can be concluded that Mount Hotham is one of the most suitable locations for wind energy generation while Wangaratta is the most suitable location for solar energy generation. Mount Hotham is also the best suitable locations in North East region for hybrid power systems i.e., com-bination of both wind and solar energy generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The penetration of intermittent renewable energy sources (IRESs) into power grids has increased in the last decade. Integration of wind farms and solar systems as the major IRESs have significantly boosted the level of uncertainty in operation of power systems. This paper proposes a comprehensive computational framework for quantification and integration of uncertainties in distributed power systems (DPSs) with IRESs. Different sources of uncertainties in DPSs such as electrical load, wind and solar power forecasts and generator outages are covered by the proposed framework. Load forecast uncertainty is assumed to follow a normal distribution. Wind and solar forecast are implemented by a list of prediction intervals (PIs) ranging from 5% to 95%. Their uncertainties are further represented as scenarios using a scenario generation method. Generator outage uncertainty is modeled as discrete scenarios. The integrated uncertainties are further incorporated into a stochastic security-constrained unit commitment (SCUC) problem and a heuristic genetic algorithm is utilized to solve this stochastic SCUC problem. To demonstrate the effectiveness of the proposed method, five deterministic and four stochastic case studies are implemented. Generation costs as well as different reserve strategies are discussed from the perspectives of system economics and reliability. Comparative results indicate that the planned generation costs and reserves are different from the realized ones. The stochastic models show better robustness than deterministic ones. Power systems run a higher level of risk during peak load hours.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When no prior knowledge is available, clustering is a useful technique for categorizing data into meaningful groups or clusters. In this paper, a modified fuzzy min-max (MFMM) clustering neural network is proposed. Its efficacy for tackling power quality monitoring tasks is demonstrated. A literature review on various clustering techniques is first presented. To evaluate the proposed MFMM model, a performance comparison study using benchmark data sets pertaining to clustering problems is conducted. The results obtained are comparable with those reported in the literature. Then, a real-world case study on power quality monitoring tasks is performed. The results are compared with those from the fuzzy c-means and k-means clustering methods. The experimental outcome positively indicates the potential of MFMM in undertaking data clustering tasks and its applicability to the power systems domain.