32 resultados para Delay Tolerant Network


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The converge-cast in wireless sensor networks (WSNs) is widely applied in many fields such as medical applications and the environmental monitoring. WSNs expect not only providing routing with high throughput but also achieving efficient energy saving. Network coding is one of the most promising techniques to reduce the energy consumption. By maximizing the encoding number, the message capacity per package can be extended to the most efficient condition. Thus, many researchers have focused their work on this field. Nevertheless, the packages sent by the outer nodes need to be temporary stored and delayed in order to maximize the encoding number. To find out the balance between inserting the delay time and maximizing the encoding number, a Converge-cast Scheme based on data collection rate prediction (CSRP) is proposed in this paper. To avoid producing the outdated information, a prediction method based on Modifying Index Curve Model is presented to deal with the dynamic data collection rate of every sensor in WSNs. Furthermore, a novel coding conditions based on CDS is proposed to increase the coding opportunity and to solve the collision problems. The corresponding analysis and experimental results indicate that the feasibility and efficiency of the CSRP is better than normal conditions without the prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the problem of finding outer bound of forwards reachable sets and interbound of backwards reachable sets of generalized neural network systems with interval nondifferentiable time-varying delay and bounded disturbances. Based on constructing a suitable Lyapunov–Krasovskii functional and utilizing some improved Jensen integral-based inequalities, two sufficient conditions are derived for the existence of: (1) the smallest possible outer bound of forwards reachable sets and (2) the largest possible interbound of backwards reachable sets. These conditions are delay dependent and in the form of matrix inequalities, which therefore can be efficiently solved by using existing convex algorithms. Three numerical examples with simulation results are provided to demonstrate the effectiveness of our results.