42 resultados para Crystals.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) are attractive as solid-state electrolytes for electrochemical devices such as lithium-ion batteries and solar and fuel cells. OIPCs offer high ionic conductivity, nonflammability, and versatility of molecular design. Nevertheless, intrinsic ion transport behavior of OIPCs is not fully understood, and their measured properties depend heavily on thermal history. Solid-state magnetic resonance imaging experiments reveal a striking image contrast anisotropy sensitive to the orientation of grain boundaries in polycrystalline OIPCs. Probing triethyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1222FSI) samples with different thermal history demonstrates vast variations in microcrystallite alignment. Upon slow cooling from the melt, microcrystallites exhibit a preferred orientation throughout the entire sample, leading to an order of magnitude increase in conductivity as probed using impedance spectroscopy. This investigation describes both a new conceptual window and a new characterization method for understanding polycrystalline domain structure and transport in plastic crystals and other solid-state conductors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe novel lyotropic liquid-crystalline (LLC) materials based on photoresponsive amphiphiles that exhibit rapid photoswitchable rheological properties of unprecedented magnitude between solidlike and liquidlike states. This was achieved through the synthesis of a novel azobenzene-containing surfactant (azo-surfactant) that actuates the transition between different LLC forms depending on illumination conditions. Initially, the azo-surfactant/water mixtures formed highly ordered and viscous LLC phases at 20-55 wt % water content. Spectroscopic, microscopic, and rheological analysis confirmed that UV irradiation induced the trans to cis isomerization of the azo-surfactant, leading to the disruption of the ordered LLC phases and a dramatic, rapid decrease in the viscosity and modulus resulting in a 3 orders of magnitude change from a solid (20,000 Pa) to a liquid (50 Pa) at rate of 13,500 Pa/s. Subsequent exposure to visible light reverses the transition, returning the viscosity essentially to its initial state. Such large, rapid, and reversible changes in rheological properties within this LLC system may open a door to new applications for photorheological fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The investigation of solid state sodium ion electrolytes based on Organic Ionic Plastic Crystals were carried out for potential use in the electrochemical devices such as batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a facile method to prepare thermally stable and mechanically robust crosslinked lyotropic liquid crystals (LLCs) through incorporation of a polymerizable amphiphile into a binary LLC system comprising commercially available surfactant Brij 97 and water. Thermal stability and mechanical properties of the polymerized LLCs were significantly enhanced after polymerization of the incorporated polymerizable surfactant. The effect of incorporating a polymerizable amphiphile on the phase behavior of the LLC system was studied in detail. In situ photo-rheology was used to monitor the change in the mechanical properties of the LLCs, namely the storage modulus, loss modulus, and viscosity, upon polymerization. The retention of the LLC nanostructures was evaluated by small angle X-ray scattering (SAXS). The ability to control the thermal stability and mechanical strength of LLCs simply by adding a polymerizable amphiphile, without tedious organic synthesis or harsh polymerization conditions, could prove highly advantageous in the preparation of robust nanomaterials with well-defined periodic structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brick shaped mineral deposits or crystals are found in the shell of semi-domestic silk cocoon of Antheraea assamensis (A. assamensis). Effective removal and recovery of these crystals are important to understand their roles in the cocoon's protective function towards pupae. In this study, chemical and physical (ultrasonication) demineralisation methods were investigated for A. assamensis. It was found that the physical demineralisation method could effectively separate crystals without changing their shape and size and not effecting other components of the silk cocoon. The efficient recovery of the crystals, without any change in their chemical composition was confirmed based on FTIR, XRD and EDX techniques. Chemical demineralisation method was optimised and performed under milder conditions than reported in the past. It helped reeling of silk without much loss of strength or natural colour of silk fibre.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of polyvinylidene difluoride (PVDF) electrospun nanofibres within N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF4] was investigated with a view to fabricating self-standing membranes for various electrochemical device applications, in particular lithium metal batteries. Significant improvement in mechanical properties and ionic conduction was demonstrated in a previous study, which also demonstrated the remarkably high performance of the lithium-doped composite material in a device. We now seek a fundamental understanding of the role of fibres within the matrix of the plastic crystal, which is essential for optimizing device performance through fine-tuning of the composite material properties. The focus of the current study is therefore a thorough investigation of the phase behaviour and conduction behaviour of the pure and the lithium-doped (as LiBF4) plastic crystal, with and without incorporation of polymer nanofibres. Analysis of the structure of the plastic crystal, including the effects of lithium ions and the incorporation of PVDF fibres, was conducted by means of synchrotron XRD. Ion dynamics were evaluated using VT solid-state NMR spectroscopy. ATR-FTIR spectroscopy was employed to gain insights into the molecular interactions of doped lithium ions and/or the PVDF nanofibres in the matrix of the [C2mpyr][BF4] composites. Preliminary measurements using PALS were conducted to probe structural defects within the pure materials. It was found that ion transport within the plastic crystal was significantly altered by doping with lithium ions due to the precipitation of a second phase in the structure. The incorporation of the fibres activated more mobile sites in the systems, but restricted ion mobility with different trends being observed for each ion species in each crystalline phase. In the presence of the fibres a strong interaction observed between the Li ion and the pyrrolidinium ring disappeared and formation of the second phase was prevented. As a result, an increased number of mobile lithium ions are released into the solid solution structure of the matrix, simultaneously removing the blocking effect of the second phase. Thus, ion conduction was remarkably improved within the Li-doped composite compared to the neat Li-doped plastic crystal.