47 resultados para Compression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A compression cell designed to fit inside an NMR spectrometer was used to investigate (i) the in situ dynamic strain response and structural changes of the internal pore network, and (ii) the diffusion and flow of interstitial water, in full thickness cartilage samples as they were mechanically deformed under a constant compressive load (pressure) and then allowed to recover (swell again) when the load was removed. Selective enzymatic digestion of the collagen fibril network and the glycopolysaccharide hyaluronic acid (HA) was performed to mimic some of the structural and compositional changes associated with osteoarthritis. Digestion of collagen gave rise to mechanical ‘dynamic softening’ and—perhaps more importantly—nearly complete loss in the ability to recover through swelling, both effects due to the disruption of the hierarchical structure and fibril interconnectivity in the collagen network which adversely affects its ability to deform reversibly and to properly regulate the pressurization and resulting rate and direction of interstitial fluid flow. In contrast, digestion of HA inside the collagen pore network caused the cartilage to ‘dynamically stiffen’ which is attributed to the decrease in the osmotic (entropic) pressure of the digested HA molecules confined in the cartilage pores that causes the network to contract and thereby become less permeable to flow. These digestioninduced changes in cartilage’s properties reveal a complex relationship between the molecular weight and concentration of the HA in the interstitial fluid, and the structure and properties of the collagen fibril pore network, and provide new insights into how changes in either could influence the onset and progression of osteoarthritis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow curve behaviour and microstructure evolution of commercially pure titanium (CP-Ti) through uniaxial hot compression was investigated at 850 °C and a strain rate of 0.1/s. Electron back scattered diffraction (EBSD) was employed to characterize the microstructure and crystallographic texture development for different thermomechanical conditions. The stress-strain curves of CP-Ti alloy under hot compression displayed a typical flow behaviour of metals undergoing dynamic recrystallization (DRX), which resulted in grain refinement. The critical strain for the onset of DRX was 0.13 using the double differentiation analysis technique. It was also revealed that the texture was markably altered during hot deformation. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For high end compression sportswear it has increasingly become a crowded and highly competitive market with almost all sportswear companies having some form of offering. This work done in conjunction with a multinational sportswear group explores the use of virtual (FEA) and physical prototyping for a new garment design to ensure a competitive product in the market place. It was found that using a variety of processes, validation and feedback was given at several stages of the development program and highlighted areas of concern well before a final product was developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strengthening and rehabilitation have been increasingly applied in many structures to improve their capacity and serviceability. Fiber Reinforced Polymer (FRP) materials are universally known for their ability to improve the load capacity of damaged structural elements because of their high linear-elastic behavior. However, enhancing the capacity of structural elements that are exposed to repeated load coupled with harsh environment is an area that requires further investigation. This research focused on experimental analysis of the behavior and response of confined and unconfined concrete compression members (300mm x 150mm) under repeated load while exposed to 1440 cycles of seawater splash zone in United Arab Emirates (UAE). Confining concrete compression members with Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) sheets have increased the load capacity compared to the control sample at room temperature by 110% and 84%, respectively. Results showed that the average value of compressive strength for the confined concrete exposed to sea water splash zone conditions for CFRP and GFRP specimens has decreased by 33% and 23%, respectively, compared to the confined concrete in the room temperature. However, GFRP specimens showed higher performance in compressive strength under sea water splash zone than those of the CFRP specimens. Different mode of failures such as delamination, de-bonding and combination of such modes were observed and related to various exposure factors and mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Mg-5%Zn alloy has been aged to form c-axis rod precipitates which are known to increase strength. Micropillar compression tests were carried out in the precipitate-free and aged samples to investigate the effects of these precipitates on twinning and slip in magnesium alloys. Basal slip, pyramidal slip and {101¯2} twinning were selectively activated by compressing micropillars in the [112¯3], [0 0 0 1] and [112¯0] orientations, respectively. It has been found that precipitation causes moderate hardening of the basal slip system, and also significantly increases the work hardening rate. The compression of [112¯0] initiated twinning, but the present experiments were dominated by twin nucleation, rather than growth. It was found that the effect of precipitation on twin nucleation was negligible. Precipitation had little effect on specimens compressed in the c-axis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic strain gradients can influence the work-hardening behaviour of metals due to the accumulation of geometrically necessary discolations at the micron/submicron scale. A finite element model based on the conventional theory of mechanism-based strain-gradient plasticity has been developed to simulate the micropillar compression of Cu–Fe thin films and multilayers. The modelling results show that the geometric constraints lead to inhomogeneous deformation in the Cu layers, which agrees well with the bulging of Cu layers observed experimentally. Plastic strain gradients develop inside the individual layers, leading to extra work-hardening due to the accumulation of geometrically necessary dislocations. In the multilayer specimens, the Cu layers deform more severely than the Fe layers, resulting in the development of tensile stresses in the Fe layers. It is proposed that these tensile stresses are responsible for the development of micro-cracks in the Fe layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of semiconductor process and EDA tools technology, IC designers can integrate more functions. However, to reduce the demand of time-to-market and tackle the increasing complexity of SoC, the need of fast prototyping and testing is growing. Taking advantage of deep submicron technology, modern FPGAs provide a fast and low-cost prototyping with large logic resources and high performance. So the hardware is mapped onto an emulation platform based on FPGA that mimics the behaviour of SOC. In this paper we use FPGA as a system on chip which is then used for image compression by 2-D DCT respectively and proposed SoC for image compression using soft core Microblaze. The JPEG standard defines compression techniques for image data. As a consequence, it allows to store and transfer image data with considerably reduced demand for storage space and bandwidth. From the four processes provided in the JPEG standard, only one, the baseline process is widely used. Proposed SoC for JPEG compression has been implemented on FPGA Spartan-6 SP605 evaluation board using Xilinx platform studio, because field programmable gate array have reconfigurable hardware architecture. Hence the JPEG image with high speed and reduced size can be obtained at low risk and low power consumption of about 0.699W. The proposed SoC for image compression is evaluated at 83.33MHz on Xilinx Spartan-6 FPGA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development behaviors of ultrafine grains (UFGs) due to continuous dynamic recrystallization (cDRX) were investigated in hot compression of a Mg-4Y-2Nd-0.2Zn-0.5Zr alloy pretreated in solution and subsequently peak-aging. In the aging sample containing statically precipitated particles (SPPs), the occurrence of cDRX starts to take place at medium to high strains, and finally a stable size of UFGs are fully developed in a whole volume. In the as-solution sample with no SPPs, by contrast, the size of UFGs evolved increases rapidly at lower strains, slowly at medium strains and then finally shows a bimodal distribution in high strain. In the latter, smaller grains accompanying with an incomplete formation of UFGs are developed by any effect of dynamically precipitated particles (DPPs). The microtexture evolved is effectively randomized in the regions of UFGs, leading to the formation of a weaker texture. The tensile elongation of the aging sample, with SPPs and fully developed UFGs, was around 17.4%. This was much higher than that of the as-solution one, with no SPPs and incompletely developed UFGs, that was 11.8%, which might result from the more randomized texture due to fully developed UFGs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a novel anomaly detection framework for multiple heterogeneous yet correlated time series, such as the medical surveillance series data. In our framework, we propose an anomaly detection algorithm from the viewpoint of trend and correlation analysis. Moreover, to efficiently process huge amount of observed time series, a new clustering-based compression method is proposed. Experimental results indicate that our framework is more effective and efficient than its peers. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presents a detailed investigation of the microstructure characteristics of the (111) oriented grains in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 925 °C at a strain rate of 1 s- 1. The above grains exhibited a tendency to split into deformation bands having alternating orientations and largely separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances. On a fine scale, the (111) oriented grains typically contained a mix of "microbands" (MBs) closely aligned with {111} slip planes and those significantly deviated from these planes. The above deformation substructure thus markedly differed from the microstructure type, comprising strictly non-{111} aligned MBs, expected within such grains on the basis of the uniaxial compression experiments performed using aluminium. Both the crystallographic MBs and their non-crystallographic counterparts typically displayed similar misorientations and formed self-screening arrays characterized by systematically alternating misorientations. The crystallographic MBs were exclusively aligned with {111} slip planes containing slip systems whose sum of Schmid factors was the largest among the four available slip planes. The corresponding boundaries appeared to mainly display either a large twist or a large tilt component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compression ignition (CI) engine design is subject to many constraints which presents a multi-criteria optimisation problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient, but must also deliver low gaseous, particulate and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming are minimised. Consequently, this study undertakes a multi-criteria analysis which seeks to identify alternative fuels, injection technologies and combustion strategies that could potentially satisfy these CI engine design constraints. Three datasets are analysed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of 1): an ethanol fumigation system, 2): alternative fuels (20 % biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and 3): various biodiesel fuels made from 3 feedstocks (i.e. soy, tallow, and canola) tested at several blend percentages (20-100 %) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20 % by energy) at moderate load, high percentage soy blends (60-100 %), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most “preferred” solutions to this multi-criteria engine design problem. Further research is, however, required to reduce Reactive Oxygen Species (ROS) emissions with alternative fuels, and to deliver technologies that do not significantly reduce the median diameter of particle emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of alternative fuels, such as biodiesels and related blends, it is important to develop an understanding of their effects on inter-cycle variability which, in turn, influences engine performance as well as its emission. Using four methanol trans-esterified biomass fuels of differing carbon chain length and degree of unsaturation, this paper provides insight into the effect that alternative fuels have on inter-cycle variability. The experiments were conducted with a heavy-duty Cummins, turbo-charged, common-rail compression ignition engine. Combustion performance is reported in terms of the following key in-cylinder parameters: indicated mean effective pressure (IMEP), net heat release rate (NHRR), standard deviation of variability (StDev), coefficient of variation (CoV), peak pressure, peak pressure timing and maximum rate of pressure rise. A link is also established between the cyclic variability and oxygen ratio, which is a good indicator of stoichiometry. The results show that the fatty acid structures did not have a significant effect on injection timing, injection duration, injection pressure, StDev of IMEP, or the timing of peak motoring and combustion pressures. However, a significant effect was noted on the premixed and diffusion combustion proportions, combustion peak pressure and maximum rate of pressure rise. Additionally, the boost pressure, IMEP and combustion peak pressure were found to be directly correlated to the oxygen ratio. The emission of particles positively correlates with oxygen content in the fuel as well as in the air-fuel mixture resulting in a higher total number of particles per unit of mass.