192 resultados para Carey, Hugh


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as a mediator of cytokine signaling and implicated in hypertrophy; however, the importance of this pathway following resistance exercise in human skeletal muscle has not been investigated. In the present study, the phosphorylation and nuclear localization of STAT3, together with STAT3-regulated genes, were measured in the early recovery period following intense resistance exercise. Muscle biopsy samples from healthy subjects (7 males, 23.0 + 0.9 yr) were harvested before and again at 2, 4, and 24 h into recovery following a single bout of maximal leg extension exercise (3 sets, 12 repetitions). Rapid and transient activation of phosphorylated (tyrosine 705) STAT3 was observed at 2 h postexercise. STAT3 phosphorylation paralleled the transient localization of STAT3 to the nucleus, which also peaked at 2 h postexercise. Downstream transcriptional events regulated by STAT3 activation peaked at 2 h postexercise, including early responsive genes c-FOS (800-fold), JUNB (38-fold), and c-MYC (140-fold) at 2 h postexercise. A delayed peak in VEGF (4-fold) was measured 4 h postexercise. Finally, genes associated with modulating STAT3 signaling were also increased following exercise, including the negative regulator SOCS3 (60-fold). Thus, following a single bout of intense resistance exercise, a rapid phosphorylation and nuclear translocation of STAT3 are evident in human skeletal muscle. These data suggest that STAT3 signaling is an important common element and may contribute to the remodeling and adaptation of skeletal muscle following resistance exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Notch signaling is essential for myogenesis and the regenerative potential of skeletal muscle: however, its regulation in human muscle is yet to be fully characterized. Increased expression of Notch3, Jagged1. Hes1, and Hes6 gene transcripts were observed during differentiation of cultured human skeletal muscle cells. Furthermore, significantly lower expressions of Notch1, Jagged1, Numb, and Delta-like 1 were evident in muscle biopsies from older men (60-75 years old) compared to muscle from younger men (18-25 years old). Importantly, with supervised resistance exercise training, expression of Notch1 and Hes6 genes were increased and Delta-like 1 and Numb expression were decreased. The differences in Notch expression between the age groups were no longer evident following training. These results provide further evidence to support the role of Notch in the impaired regulation of muscle mass with age and suggest that some of the benefits provided by resistance training may be mediated through the Notch signaling pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine whether preexercise muscle glycogen content influences the transcription of several early-response genes involved in the regulation of muscle growth, seven male strength-trained subjects performed one-legged cycling exercise to exhaustion to lower muscle glycogen levels (Low) in one leg compared with the leg with normal muscle glycogen (Norm) and then the following day completed a unilateral bout of resistance training (RT). Muscle biopsies from both legs were taken at rest, immediately after RT, and after 3 h of recovery. Resting glycogen content was higher in the control leg (Norm leg) than in the Low leg (435 ± 87 vs. 193 ± 29 mmol/kg dry wt; P < 0.01). RT decreased glycogen content in both legs (P < 0.05), but postexercise values remained significantly higher in the Norm than the Low leg (312 ± 129 vs. 102 ± 34 mmol/kg dry wt; P < 0.01). GLUT4 (3-fold; P < 0.01) and glycogenin mRNA abundance (2.5-fold; not significant) were elevated at rest in the Norm leg, but such differences were abolished after exercise. Preexercise mRNA abundance of atrogenes was also higher in the Norm compared with the Low leg [atrogin: 14-fold, P < 0.01; RING (really interesting novel gene) finger: 3-fold, P < 0.05] but decreased for atrogin in Norm following RT (P < 0.05). There were no differences in the mRNA abundance of myogenic regulatory factors and IGF-I in the Norm compared with the Low leg. Our results demonstrate that 1) low muscle glycogen content has variable effects on the basal transcription of select metabolic and myogenic genes at rest, and 2) any differences in basal transcription are completely abolished after a single bout of heavy resistance training. We conclude that commencing resistance exercise with low muscle glycogen does not enhance the activity of genes implicated in promoting hypertrophy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cognitive behavioural strategies (CBS) are circumscribed psychologial skills that can be incorporated into general practice, and need to be distinguished from cognitive behavioural therapy (CBT), a comprehensive therapeutic approach which require more intensive training.  The CBS outlined in this article can be integrated with other behavioural and structured problem solving approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies examining gene expression with RT-PCR typically normalize their mRNA data to a constitutively expressed housekeeping gene. The validity of a particular housekeeping gene must be determined for each experimental intervention. We examined the expression of various housekeeping genes following an acute bout of endurance (END) or resistance (RES) exercise. Twenty-four healthy subjects performed either a interval-type cycle ergometry workout to exhaustion (~75 min; END) or 300 single-leg eccentric contractions (RES). Muscle biopsies were taken before exercise and 3 h and 48 h following exercise. Real-time RT-PCR was performed on ß-actin, cyclophilin (CYC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ß2-microglobulin (ß2M). In a second study, 10 healthy subjects performed 90 min of cycle ergometry at ~65% of O2 max, and we examined a fifth housekeeping gene, 28S rRNA, and reexamined ß2M, from muscle biopsy samples taken immediately postexercise. We showed that CYC increased 48 h following both END and RES exercise (3- and 5-fold, respectively; P < 0.01), and 28S rRNA increased immediately following END exercise (2-fold; P = 0.02). ß-Actin trended toward an increase following END exercise (1.85-fold collapsed across time; P = 0.13), and GAPDH trended toward a small yet robust increase at 3 h following RES exercise (1.4-fold; P = 0.067). In contrast, ß2M was not altered at any time point postexercise. We conclude that ß2M and ß-actin are the most stably expressed housekeeping genes in skeletal muscle following RES exercise, whereas ß2M and GAPDH are the most stably expressed following END exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of allopurinol on urinary purine loss was examined in 7 active male subjects (age 24.9 ± 3.0 years, weight 82.8 ± 8.3 kg, V˙o2peak 48.1 ± 6.9 mL · kg−1 · min−1). These subjects performed, in random order, a trial with 5 days of prior ingestion of a placebo or allopurinol. Each trial consisted of eight 10-second sprints on an air-braked cycle ergometer and was separated by at least a week. A rest period of 50 seconds separated each repeated sprint. Forearm venous plasma inosine, hypoxanthine (Hx) and uric acid concentrations were measured at rest and during 120 minutes of recovery from exercise. Urinary inosine, Hx, xanthine, and uric acid excretion were also measured before and for 24 hours after exercise. During the first 120 minutes of recovery, plasma Hx concentrations, as well as the urinary Hx and xanthine excretion rates, were higher (P < .05) with allopurinol compared with the placebo trial. In contrast, plasma uric acid concentration and urinary uric acid excretion rates were lower (P < .05) with allopurinol. The total urinary excretion of purines (inosine + Hx + xanthine + uric acid) above basal levels was higher in the allopurinol trial compared with placebo. These results indicate that the total urinary purine excretion after intermittent sprint exercise was enhanced with allopurinol treatment. Furthermore, the composition of urinary purines was markedly affected by this drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal muscle displays enormous plasticity to respond to contractile activity with muscle from strength- (ST) and endurance-trained (ET) athletes representing diverse states of the adaptation continuum. Training adaptation can be viewed as the accumulation of specific proteins. Hence, the altered gene expression that allows for changes in protein concentration is of major importance for any training adaptation. Accordingly, the aim of the present study was to quantify acute subcellular responses in muscle to habitual and unfamiliar exercise. After 24-h diet/exercise control, 13 male subjects (7 ST and 6 ET) performed a random order of either resistance (8 x 5 maximal leg extensions) or endurance exercise (1 h of cycling at 70% peak O2 uptake). Muscle biopsies were taken from vastus lateralis at rest and 3 h after exercise. Gene expression was analyzed using real-time PCR with changes normalized relative to preexercise values. After cycling exercise, peroxisome proliferator-activated receptor- coactivator-1 (ET 8.5-fold, ST 10-fold, P < 0.001), pyruvate dehydrogenase kinase-4 (PDK-4; ET 26-fold, ST 39-fold), vascular endothelial growth factor (VEGF; ET 4.5-fold, ST 4-fold), and muscle atrophy F-box protein (MAFbx) (ET 2-fold, ST 0.4-fold) mRNA increased in both groups, whereas MyoD (3-fold), myogenin (0.9-fold), and myostatin (2-fold) mRNA increased in ET but not in ST (P < 0.05). After resistance exercise PDK-4 (7-fold, P < 0.01) and MyoD (0.7-fold) increased, whereas MAFbx (0.7-fold) and myostatin (0.6-fold) decreased in ET but not in ST. We conclude that prior training history can modify the acute gene responses in skeletal muscle to subsequent exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diving animals offer a unique opportunity to study the importance of physiological constraint and the limitation it can impose on animal's behaviour in nature. This paper examines the interaction between physiology and behaviour and its impact on the diving capability of five eared seal species (Family Otariidae; three sea lions and two fur seals). An important physiological component of diving marine mammals is the aerobic dive limit (ADL). The ADL of these five seal species was estimated from measurements of their total body oxygen stores, coupled with estimates of their metabolic rate while diving. The tendency of each species to exceed its calculated ADL was compared relative to its diving behaviour. Overall, our analyses reveal that seals which forage benthically (i.e. on the sea floor) have a greater tendency to approach or exceed their ADL compared to seals that forage epipelagically (i.e. near the sea surface). Furthermore, the marked differences in foraging behaviour and physiology appear to be coupled with a species demography. For example, benthic foraging species have smaller populations and lower growth rates compared to seal species that forage epipelagically. These patterns are relevant to the conservation and management of diving vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presents a comprehensive collection of essays designed to guide current and prospective doctoral candidates through the amazing journey of doctoral study. Includes chapters on beginning candidature, selecting a supervisor, countering isolation, engaging support structures, and more.