37 resultados para Cantilever slab


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of climate change on the shallow expansive foundation conditions of resident dwellings is costing several hundred billion dollars worldwide. The design and costs of constructing or repairing residential footings is greatly influenced by the degree of ground movement, which is driven by the magnitude of change in soil moisture. The impacts of climate change on urban infrastructure are expected to include accelerated degradation of materials and foundations of buildings and facilities, increased ground movement, changes in ground water affecting the chemical structure of foundations, and fatigue of structures from extreme storm events. Previous research found that residential houses that were built less than five years ago have suffered major cracks and other damage caused by slab movement after record rainfall. The Thornthwaite Moisture Index (TMI) categorises climate on the basis of rainfall, temperature, potential evapotranspiration and the water holding capacity of the soil. Originally TMI was mainly used to map soil moisture conditions for agriculture but soon became a method to predict pavement and foundation changes. Few researchers have developed TMI maps for Australia, but generally, their accuracy is low or unknown, and their use is limited. The aims of this paper are: (1) To produce accurate maps of TMI for the state of Victoria for 100 years (1913 to 2012) in 20 year periods using long-term historical climatic data and advanced spatial statistics methods in GIS, and (2) Analyse the spatial and temporal changes of TMI in Victoria. Preliminary results suggest that a better understanding of climate change through long-term TMI mapping can assist urban planning and guide construction regulations towards the development of cities which are more resilient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS2) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS2 nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostatic interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS2 nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS2 nanosheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we present the concept of planar polymer photonic waveguides for the health monitoring of aerospace structures. Here a polymer layer is deposited onto the material/structure to be monitored. Within the polymer layer, waveguides are created after deposition. These waveguides can then be used as 'optical fibres' for optical fibre sensing methodologies. In investigating the use of polymer photonic waveguides the question to be answered is: does the strain in the test material transfer to the polymer layer, such that the value to be measured optically is reliable and indicative of the true strain in the test structure? To answer this question we have conducted a preliminary structural analysis with finite element analysis, utilising ANSYS. A simple aluminium cantilever was used as the test structure, and layers of polyethylene with different thicknesses were added to this. Result show that the thinner the layer of polymer, the more accurate the measured strain will be. For a 100um coating, the difference is strain was observed to be on the order of 3.3%. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element study based on 1D beam element model is performed in order to investigate the mechanical behavior of an elasto-plastic beam loaded in axial compression over its buckling limit. The mode of loading is related to the damage of truss-cored beams in truss-cored laminates. The analysis takes into account the effects of geometry and material properties. The results of the FEM analysis are used for developing a simple mechanical model based on the basic Euler-Bernoulli beam theory and accounts for the beam compressibility. The model uses phenomenological functions containing parameters related to the basic material and geometrical properties. The presented model is developed in the form of closed solution which does not require complex numerical methods or extensive parametric studies. Predictions of the compressive stiffness degradation of truss-cored composites are made with the proposed model and compared with the results of FEM simulations. The error of the stiffness prediction with respect to the FEM results is within 10% over a 5 fold range of stiffness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing demand for high performance composites with enhanced mechanical and electrical properties. Carbon nanofibres offer a promising solution but their effectiveness has been limited by difficulty in achieving directional alignment. Here we report the use of an alternating current (AC) electric field to align carbon nanofibres in an epoxy. During the cure process of an epoxy resin, carbon nanofibres (CNFs) are observed to rotate and align with the applied electric field, forming a chain-like structure. The fracture energies of the resultant epoxy nanocomposites containing different concentrations of CNFs (up to 1.6wt%) are measured using double cantilever beam specimens. The results show that the addition of 1.6wt% of aligned CNFs increases the electrical conductivity of such nanocomposites by about seven orders of magnitudes to 10<sup>-2</sup>S/m and increases the fracture energy, G<inf>Ic</inf>, by about 1600% from 134 to 2345J/m<sup>2</sup>. A modelling technique is presented to quantify this major increase in the fracture energy with aligned CNFs. The results of this research open up new opportunities to create multi-scale composites with greatly enhanced multifunctional properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solving the problem of pre mature debonding of CFRP retrofitted structure is a main concern for most of structural engineers nowadays. Reducing the brittleness of the bonding agent at the CFRP/concrete interface is a major factor to avoid this behaviour. In this research, the effect of modifying the bonding agent using different percentages of ionic liquid (IL) is investigated. This paper reports on an experimental investigation on the behaviour of modified epoxy resin with IL. Steel plates were used as hosting surface of the CFRP laminates, the laminates were attached to the steel surface using the IL modified epoxy. The shear mechanism at the interface of CFRP laminates to steel plates is discussed considering the relationship between the shear and the slip at the interface. The shear stress- displacement are traced for all specimens, the results are compared with control test prepared using unmodified epoxy. A 20% IL modified epoxy shows improved Behaviour. The improvement is with respect to ductility enhancement of the overall behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Technologies, such as Atomic Force Microscopy (AFM), have proven to be one of the most versatile research equipments in the field of nanotechnology by providing physical access to the materials at nanoscale. Working principles of AFM involve physical interaction with the sample at nanometre scale to estimate the topography of the sample surface. Size of the cantilever tip, within the range of few nanometres diameter, and inherent elasticity of the cantilever allow it to bend in response to the changes in the sample surface leading to accurate estimation of the sample topography. Despite the capabilities of the AFM, there is a lack of intuitive user interfaces that could allow interaction with the materials at nanoscale, analogous to the way we are accustomed to at macro level. To bridge this gap of intuitive interface design and development, a haptics interface is designed in conjunction with Bruker Nanos AFM. Interaction with the materials at nanoscale is characterised by estimating the forces experienced by the cantilever tip employing geometric deformation principles. Estimated forces are reflected to the user, in a controlled manner, through haptics interface. Established mathematical framework for force estimation can be adopted for AFM operations in air as well as in liquid mediums.