33 resultados para CERIUM OXIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With an increase in use of nanoparticles (NPs) in day to day products, these particles eventually enter the wastewater treatment plant and get removed from the effluent while getting accumulated in the sludge at ever increasing concentrations. These NPs have a potential for causing inhibition in sludge digestion processes. Therefore, this research focused on the effects of cerium (IV) oxide (CeO2) and zinc oxide (ZnO) NPs on biogas production from sludge. The inhibition effects were investigated by studying toxicity of the said NPs on Escherichia coli. The results showed that CeO2 and ZnO NPs showed some degree of inhibition in biogas production with 65.3% biogas reduction at ZnO NPs at 1000 mg/L concentration. Conversely, CeO2 at low concentration of 10 mg/L lead to an increase biogas generation by 11%. The tolerable exposure concentrations for ZnO were determined to be 100 and 500 mg/L, where the system could overcome the inhibition effect after 14 days of incubation. The bacterial toxicity test showed that both nanoparticles were toxic for bacteria leading to biogas reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipases, which can be immobilized and reused for many reaction cycles, are important enzymes with many industrial applications. A key challenge in lipase immobilization for catalysis is to open the lipase lid and maintain it in an open conformation in order to expose its active site. Here we have designed "tailor-made" graphene-based nanosupports for effective lipase (QLM) immobilization through molecular engineering, which is in general a grand challenge to control biophysicochemical interactions at the nano-bio interface. It was observed that increasing hydrophobic surface increased lipase activity due to opening of the helical lid present on lipase. The molecular mechanism of lid opening revealed in molecular dynamics simulations highlights the role of hydrophobic interactions at the interface. We demonstrated that the open and active form of lipase can be achieved and tuned with an optimized activity through chemical reduction of graphene oxide. This research is a major step toward designing nanomaterials as a platform for enhancing enzyme immobilization/activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis focuses on use of carbon nanoparticles, namely graphene oxides for studying the effect of hydrophobicity on enzyme structure and how they it influences the enzyme activity at molecular level. It was observed that controlling the hydrophobicity of the nanoparticle is a key towards modulating enzyme activity.