240 resultados para Boilers, Bagasse, CFD, Erosion, Corrosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the development of a 10–100 nanometer thick surface film upon pure Mg on exposure to an ionic liquid (IL) based on the bis(trifluoromethanesulfonyl)amide (TFSA) anion. This film formation is the result of the oxidative reactivity of the metal in the IL, with the subsequent effect of ultimately protecting the underlying metal from corrosion in aqueous chloride containing solution. Film formation was studied in the IL using an electrochemical droplet cell. It was seen that this film is adherent and subsequently facilitates appreciable protection against corrosion as judged by subsequent electrochemical testing in the form of potentiodynamic polarization and impedance spectroscopy, along with direct observation. The physical film morphology was studied by electron microscopy and focused ion beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A combination of linear polarisation resistance (LPR) and cyclic potentiodynamic polarisation (CPP) measurements demonstrated that the lanthanum-4 hydroxy cinnamate compound could inhibit both the cathodic and anodic corrosion reactions on mild steel surfaces exposed to 0.01 M NaCl solutions. However, the dominating response was shown to vary with inhibitor concentration. At the concentrations for which the highest level of protection was achieved, both REM-4 hydroxy cinnamate (REM being lanthanum and mischmetal) displayed a strong anodic behaviour for mild steel and their inhibition performance, including their resistance against localised attack, improved with time.

Electrochemical impedance spectroscopy (EIS) measurements and modelling were carried out so as to propose a simple electrical model and correlate the extracted parameters to the inhibition mechanism put forward for REM-cinnamate based compounds. The results supported the high corrosion inhibition performance of the compounds as well as the build-up of a protective film with time. Based on a two-layer model the results suggested that the upper layer of the inhibitor film seemed to offer less resistance to the diffusion of electrochemically active species than the highly resistive inner layer at the film/metal interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion inhibition mechanisms of new cerium and lanthanum cinnamate based compounds have been investigated through the surface characterisation of the steel exposed to NaCl solution of neutral pH. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to identify the nature of the deposits on the metal surface and demonstrated that after accelerated tests the corrosion product commonly observed on steel (i.e. lepidocrocite, γ-FeOOH) is absent. The cinnamate species were clearly present on the steel surface upon exposure to NaCl solution for short periods and appeared to coordinate through the iron. At longer times the Rare Earth Metal (REM) oxyhydroxide species are proposed to form as identified through the bands in the 1400–1500 cm−1 region. These latter bands have been previously assigned to carbonate species adsorbed onto REM oxyhydroxide surfaces. The protection mechanism appears to involve the adsorption of the REM–cinnamate complex followed by the hydrolysis of the REM to form a barrier oxide on the steel surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corrosion rate measurements based on weight loss (i.e., mild steel immersed for seven days in 0.01 M NaCl) and linear polarization resistance (LPR) techniques have shown that even low concentrations (200 ppm) of cerium and lanthanum cinnamates are able to significantly inhibit corrosion. Of all the compounds investigated in this work Ce(4-methoxycinnamate)3· 2 H2O and La(4-methoxycinnamate)3· 2 H2O compounds exhibited the greatest inhibition and, in comparison with the component inhibitors, a synergy was clearly observed. The mechanism of corrosion inhibition was investigated using cyclic potentiodynamic polarization (CPP) measurements. The results suggest that La(4-nitrocinnamate)3· 2 H2O and Ce(4-methoxycinnamate)3· 2 H2O behave as mixed inhibitors and improve the resistance of steel against localized attack.