86 resultados para Biomedical applications


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degumming process to remove sericin decreases silk fiber strength; however, the impact of degumming on the mechanical properties of regenerated silk biomaterials has not been established. This study investigated the effect of degumming temperature, time, alkaline component and alkaline concentration on the mechanical properties of silk fibroin films. Sericin removal was estimated using weight loss; 10 samples with 12.2–29.4% weight loss were then further characterized in terms of fiber mechanical properties, fiber surface morphology, molecular weight distribution and film tensile strength. A negative correlation was found between weight loss and fiber tensile strength. This loss of fiber strength under harsher degumming conditions had a direct impact on the tensile strength of regenerated films. Mild degumming conditions (weight loss of 12.2%) led to higher film strength (8.9 MPa), whereas aggressive degumming conditions (with 29.4% weight loss) resulted in significantly weaker films (4.3 MPa). The presence of some residual sericin, after mild degumming, is likely to affect the mechanical properties of the regenerated silk films. These results will assist in the development of materials with mechanical and biocompatibility properties tuned to specific biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was to assess a number of coatings developed for Mg for biomedical applications. The Mg substrates were high-purity (HP) Mg and ME10, an alloy recently developed for improved extrudability. The research utilized the new fishing-line specimen configuration to allow direct comparison to our recent in vivo and in vitro measurements. The in vitro measurements were immersion tests of fishing-line specimens immersed in Nor's solution at 37 °C. Tests of substantial duration are needed because the corrosion rates of uncoated samples are low. Nor's solution is the designation given to Hank's solution through which CO2 is bubbled at a partial pressure of 0.009 atm. In this solution, pH is maintained constant by the interaction of CO2 and the bicarbonate ions in the solution. This is the same buffer as that which maintains the pH of blood. Coatings examined were: (i) an anodization using a bio-friendly alkaline electrolyte consisting of phosphate, borate, and metasilicate, (ii) octyltrimethoxysilane (OSi), (iii) 1,2-bis[triethoxysilyl]ethane (BTSE), (iv) anodization+OSi, and (v) anodization + BTSE. The performance of coated samples was comparable to or better than that of the uncoated samples, and there was a substantially better performance for the ME10 samples after anodization+OSi. Reasons for the various performances are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this research, strontium (Sr) and surface modification were used to improve the
biocompatibility of titanium (Ti) based implant materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silk fibroin has been widely employed in various forms as biomaterials for biomedical applications due to its superb biocompatibility and tunable degradation and mechanical properties. Herein, silk fibroin microparticles of non-mulberry silkworm species (Antheraea assamensis, Antheraea mylitta and Philosamia ricini) were fabricated via a top-down approach using a combination of wet-milling and spray drying techniques. Microparticles of mulberry silkworm (Bombyx mori) were also utilized for comparative studies. The fabricated microparticles were physico-chemically characterized for size, stability, morphology, chemical composition and thermal properties. The silk fibroin microparticles of all species were porous (∼5μm in size) and showed nearly spherical morphology with rough surface as revealed from dynamic light scattering and microscopic studies. Non-mulberry silk microparticles maintained the typical silk-II structure with β-sheet secondary conformation with higher thermal stability. Additionally, non-mulberry silk fibroin microparticles supported enhanced cell adhesion, spreading and viability of mouse fibroblasts than mulberry silk fibroin microparticles (p<0.001) as evidenced from fluorescence microscopy and cytotoxicity studies. Furthermore, in vitro drug release from the microparticles showed a significantly sustained release over 3 weeks. Taken together, this study demonstrates promising attributes of non-mulberry silk fibroin microparticles as a potential drug delivery vehicle/micro carrier for diverse biomedical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface properties such as physicochemical characteristics and topographical parameters of biomaterials, essentially determining the interaction between the biological cells and the biomaterial, are important considerations in the design of implant materials. In this study, a layer of SrTiO3-TiO2 nanoparticle-nanotube heterostructures on titanium has been fabricated via anodization combined with a hydrothermal process. Titanium was anodized to create a layer of titania (TiO2) nanotubes (TNTs), which was then decorated with a layer of SrTiO3 nanoparticles via hydrothermal processing. SrTiO3-TiO2 heterostructures with high and low volume fraction of SrTiO3 nanoparticle (denoted by 6.3-Sr/TNTs and 1.4-Sr/TNTs) were achieved by using a hydrothermal processing time of 12 and 3 h, respectively. The in vitro biocompatibility of the SrTiO3-TiO2 heterostructures was assessed by using osteoblast cells (SaOS2). Our results indicated that the SrTiO3-TiO2 heterostructures with different volume fractions of SrTiO3 nanoparticles exhibited different Sr ion release in cell culture media and different surface energies. An appropriate volume fraction of SrTiO3 in the heterostructures stimulated the secretion of cell filopodia, leading to enhanced biocompatibility in terms of cell attachment, anchoring, and proliferation on the heterostructure surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research aims to develop an iron oxide nanoparticle drug delivery system utilizing a recent material discovered from ocean, fucoidan. The material has drawn much interest due to many biomedical functions that have been proven for human health. One interesting point herein is that fucoidan is not only a sulfated polysaccharide, a polymer for stabilization of iron oxide nanoparticles, but plays a role of an anticancer agent also. Various approaches were investigated to optimize the high loading efficiency and explain the mechanism of nanoparticle formations. Fucoidan was functionalized on iron oxide nanoparticles by a direct coating or via amine groups. Also, a hydrophobic part of oleic acid was conjugated to the amine groups for a more favorable loading of poorly water-soluble anticancer drugs. This study proposed a novel system and an efficient method to functionalize fucoidan on iron oxide nanoparticle systems which will lead to a facilitation of a double strength treatment of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous studies have demonstrated that Mg-Zr-Sr alloys can be anticipated as excellent biodegradable implant materials for load-bearing applications. In general, rare earth elements (REEs) are widely used in magnesium (Mg) alloys with the aim of enhancing the mechanical properties of Mg-based alloys. In this study, the REE holmium (Ho) was added to an Mg-1Zr-2Sr alloy at different concentrations of Mg1Zr2SrxHo alloys (x = 0, 1, 3, 5 wt. %) and the microstructure, mechanical properties, degradation behaviour and biocompatibility of the alloys were systematically investigated. The results indicate that the addition of Ho to Mg1Zr2Sr led to the formation of the intermetallic phases MgHo3, Mg2Ho and Mg17Sr2 which resulted in enhanced mechanical strength and decreased degradation rates of the Mg-Zr-Sr-Ho alloys. Furthermore, Ho addition (≤5 wt. %) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho alloys. The in vitro biodegradation and the biocompatibility of the Mg-Zr-Sr-Ho alloys were both influenced by the Ho concentration in the Mg alloys; Mg1Zr2Sr3Ho exhibited lower degradation rates than Mg1Zr2Sr and displayed the best biocompatibility compared with the other alloys.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The development of artificial organs and implants for replacement of injured and diseased hard tissues such as bones, teeth and joints is highly desired in orthopedic surgery. Orthopedic prostheses have shown an enormous success in restoring the function and offering high quality of life to millions of individuals each year. Therefore, it is pertinent for an engineer to set out new approaches to restore the normal function of impaired hard tissues.

Over the last few decades, a large number of metals and applied materials have been developed with significant improvement in various properties in a wide range of medical applications. However, the traditional metallic bone implants are dense and often suffer from the problems of adverse reaction, biomechanical mismatch and lack of adequate space for new bone tissue to grow into the implant. Scientific advancements have been made to fabricate porous scaffolds that mimic the architecture and mechanical properties of natural bone. The porous structure provides necessary framework for the bone cells to grow into the pores and integrate with host tissue, known as osteointegration. The appropriate mechanical properties, in particular, the low elastic modulus mimicking that of bone may minimize or eliminate the stress-shielding problem. Another important approach is to develop biocompatible and corrosion resistant metallic materials to diminish or avoid adverse body reaction. Although numerous types of materials can be involved in this fast developing field, some of them are more widely used in medical applications. Amongst them, titanium and some of its alloys provide many advantages such as excellent biocompatibility, high strength-to-weight ratio, lower elastic modulus, and superior corrosion resistance, required for dental and orthopedic implants. Alloying elements, i.e. Zr, Nb, Ta, Sn, Mo and Si, would lead to superior improvement in properties of titanium for biomedical applications.

New processes have recently been developed to synthesize biomimetic porous titanium scaffolds for bone replacement through powder metallurgy. In particular, the space holder sintering method is capable of adjusting the pore shape, the porosity, and the pore size distribution, notably within the range of 200 to 500 m as required for osteoconductive applications. The present chapter provides a review on the characteristics of porous metal scaffolds used as bone replacement as well as fabrication processes of porous titanium (Ti) scaffolds through a space holder sintering method. Finally, surface modification of the resultant porous Ti scaffolds through a biomimetic chemical technique is reviewed, in order to ensure that the surfaces of the scaffolds fulfill the requirements for biomedical applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silk fibroin films are promising materials for a range of biomedical applications. To understand the effects of casting solvents on film properties, we used water (W), formic acid (FA), and trifluoroacetic acid (TFA) as solvents. We characterized molecular weight, secondary structure, mechanical properties, and degradation behavior of cast films. Significant degradation of fibroin was observed for TFA-based film compared to W and TA-based films when analyzed by SDS-PAGE. Fibroin degradation resulted in a significant reduction in tensile strength and modulus of TFA-based films. Compared to water, TFA-based films demonstrated lower water solubility (19.6% vs. 62.5% in 12 h) despite having only a marginal increase in their ß-sheet content (26.9% vs. 23.7%). On the other hand, FA-based films with 34.3% ß-sheet were virtually water insoluble. Following solubility treatment, ß-sheet content in FA-based films increased to 50.9%. On exposure to protease XIV, water-annealed FA-based films lost 74% mass in 22 days compared to only 30% mass loss by ethanol annealed FA films. This study demonstrated that a small variation in the ß-sheet percentage and random coil conformations resulted in a significant change in the rates of enzymatic degradation without alteration to their tensile properties. The film surface roughness changed with the extent of enzymatic hydrolysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Protein fibre wastes from animal hairs, feathers and insect secreted filaments can be aptly utilized by converting them into ultra-fine particles. Particles from animal protein fibres present large surface-to-weight ratio and significantly enhanced surface reactivity, that have opened up novel applications in both textile and non-textile fields. This review article summarizes the state-of-the-art routes to fabricate ultrafine particles from animal protein fibres, including direct route of mechanical milling of fibres and indirect route from fibre proteins. Ongoing research trends in novel applications of protein fibre particles in various fields, such as biomedical science, environmental protection and composite structures are presented. © 2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ti and Ti-based alloys have unique properties such as high strength, low density and excellent corrosion resistance. These properties are essential for the manufacture of lightweight and high strength components for biomedical applications. In this paper, Ti properties such as metallurgy, mechanical properties, surface modification, corrosion resistance, biocompatibility and osseointegration in biomedical applications have been discussed. This paper also analyses the advantages and disadvantages of various Ti manufacturing processes for biomedical applications such as casting, powder metallurgy, cold and hot working, machining, laser engineering net shaping (LEN), superplastic forming, forging and ring rolling. The contributions of this research are twofold, firstly scrutinizing the behaviour of Ti and Ti-based alloys in-vivo and in-vitro experiments in biomedical applications to determine the factors leading to failure, and secondly strategies to achieve desired properties essential to improving the quality of patient outcomes after receiving surgical implants. Future research will be directed toward manufacturing of Ti for medical applications by improving the production process, for example using optimal design approaches in additive manufacturing and investigating alloys containing other materials in order to obtain better medical and mechanical characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Marine environment exhibits an enormous diversity of organisms which contains an abundant source of polysaccharides. As polymer matrix carriers, marine-based polymers possess several valuable properties including high stability, non-toxicity, hydrophilicity, biodegradability, with low production cost. Despite notable biological activities of these natural polymers, there are certain limitations in exploring their functions in applications of nano-sized drug delivery systems. The review aims to demonstrate exceptional characteristics of marine-based polymers including fucoidan, alginate, carrageenan, hyaluronic acid, chondroitin sulfate, and chitosan as well as provide perspectives of current publications on their nanoparticle formulations for biomedical applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic perforations of the eardrum or tympanic membrane represent a significant source of morbidity worldwide. Myringoplasty is the operative repair of a perforated tympanic membrane and is a procedure commonly performed by otolaryngologists. Its purpose is to close the tympanic membrane, improve hearing and limit patient susceptibility to middle ear infections. The success rates of the different surgical techniques used to perform a myringoplasty, and the optimal graft materials to achieve complete closure and restore hearing, vary significantly in the literature. A number of autologous tissues, homografts and synthetic materials are described as graft options. With the advent and development of tissue engineering in the last decade, a number of biomaterials have been studied and attempts have been made to mimic biological functions with these materials. Fibroin, a core structural protein in silk from silkworms, has been widely studied with biomedical applications in mind. Several cell types, including keratinocytes, have grown on silk biomaterials, and scaffolds manufactured from silk have successfully been used in wound healing and for tissue engineering purposes. This review focuses on the current available grafts for myringoplasty and their limitations, and examines the biomechanical properties of silk, assessing the potential benefits of a silk fibroin scaffold as a novel device for use as a graft in myringoplasty surgery.