42 resultados para Bio-mujer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in the fields of robotics, cyborg development, moral psychology, trust, multi agent-based systems and socionics have raised the need for a better understanding of ethics, moral reasoning, judgment and decision-making within the system of man and machines. Here we seek to understand key research questions concerning the interplay of ethical trust at the individual level and the social moral norms at the collective end. We review salient works in the fields of trust and machine ethics research, underscore the importance and the need for a deeper understanding of ethical trust at the individual level and the development of collective social moral norms. Drawing upon the recent findings from neural sciences on mirror-neuron system (MNS) and social cognition, we present a bio-inspired Computational Model of Ethical Trust (CMET) to allow investigations of the interplay of ethical trust and social moral norms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding of the micro-macro link is an urgent need in the study of social systems. The complex adaptive nature of social systems adds to the challenges of understanding social interactions and system feedback and presents substantial scope and potential for extending the frontiers of computer-based research tools such as simulations and agent-based technologies. In this project, we seek to understand key research questions concerning the interplay of ethical trust at the individual level and the development of collective social moral norms as representative sample of the bigger micro-macro link of social systems. We outline our computational model of ethical trust (CMET) informed by research findings from trust, machine ethics and neural science. Guided by the CMET architecture, we discuss key implementation ideas for the simulations of ethical trust and social moral norms.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to overcome interfacial incompatibility issues in natural fibre reinforced polymer bio-composites, surface modifications of the natural fibres using complex and environmentally unfriendly chemical methods is necessary. In this paper, we demonstrate that the interfacial properties of cellulose-based bio-composites can be tailored through surface adsorption of polyethylene glycol (PEG) based amphiphilic block copolymers using a greener alternative methodology. Mixtures of water or water/acetone were used to form amphiphilic emulsions or micro-crystal suspensions of PEG based amphiphilic block copolymers, and their deposition from solution onto the cellulosic substrate was carried out by simple dip-coating. The findings of this study evidence that, by tuning the amphiphilicity and the type of building blocks attached to the PEG unit, the flexural and dynamic thermo-mechanical properties of cellulose-based bio-composites comprised of either polylactide (PLA) or high density polyethylene (HDPE) as a matrix, can be remarkably enhanced. The trends, largely driven by interfacial effects, can be ascribed to the combined action of the hydrophilic and hydrophobic components of these amphiphiles. The nature of the interactions formed across the fibre-matrix interface is discussed. The collective outcome from this study provides a technological template to significantly improve the performance of cellulose-based bio-composite materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biofilm formation on membranes during water desalination operation and pre-treatments limits performance and causes premature membrane degradation. Here, we apply a novel surface modification technique to incorporate anti-microbial metal particles into the outer layer of four types of commercial polymeric membranes by cold spray. The particles are anchored on the membrane surface by partial embedment within the polymer matrix. Although clear differences in particle surface loadings and response to the cold spray were shown by SEM, the hybrid micro-filtration and ultra-filtration membranes were found to exhibit excellent anti-bacterial properties. Poly(sulfone) ultra-filtration membranes were used as for cross-flow filtration of Escherichia coli bacteria solutions to investigate the impact of the cold spray on the material[U+05F3]s integrity. The membranes were characterized by SEM-EDS, FT-IR and TGA and challenged in filtration tests. No bacteria passed through the membrane and filtrate water quality was good, indicating the membranes remained intact. No intact bacteria were found on hybrid membranes, loaded with up to 15. wt% silver, indicating the treatment was lysing bacteria on contact. However, permeation of the hybrid membranes was found to be reduced compared to control non-modified poly(sulfone) membranes due to the presence of the particles across the membrane material. The implementation of cold spray technology for the modification of commercial membrane products could lead to significant operational savings in the field of desalination and water pre-treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, micro-composite materials were produced by incorporating 3-mm long reclaimed short carbon fibers into bio-based nylon 11 via melt compounding. A systematic fiber length distribution analysis was performed after the masterbatching, compounding and an injection moulding processes using optical microscopy images. It was found that the large majority of the fibers were within the 200-300 μm in length range after the injection moulding process. The mechanical (flexural and tensile), thermo-mechanical, and creep properties of the injection moulded materials are reported. We found that an enhancement in flexural and Young's modulus of 25% and 14%, respectively, could be attained with 2 wt% carbon fiber loading whilst no significant drawback on the ductility and toughness of the matrix was observed. The creep resistance and recovery of the nylon 11, tested using dynamic mechanical thermal analysis at room temperature and 65°C, was significantly improved by up to 30% and 14%, respectively, after loading with carbon fiber. This work provides an insight into the property improvement of the bio-based polymer nylon 11 using a small amount of a reclaimed engineered material. © 2014 Society of Plastics Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics and materials assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Magnesium-based alloys containing appropriate quantities of Strontium can induce optimal bone formation. Surface modification of these alloys with Collagen-I increased mineral deposition on the peri-implant surface over shorter periods of time as compared to the unmodified alloys, indicating the role of Collagen-I and Strontium concentration in bone resorption and remodelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It remains a huge challenge to create advanced polymeric materials combining high strength, great toughness, and biodegradability so far. Despite enhanced strength and stiffness, biomimetic materials and polymer nanocomposites suffer notably reduced extensibility and toughness when compared to polymer bulk. Silk displays superior strength and toughness via hydrogen bonds (H-bonds) assembly, while cuticles of mussels gain high hardness and toughness via metal complexation cross-linking. Here, we propose a H-bonds cross-linking strategy that can simultaneously strikingly enhance strength, modulus, toughness, and hardness relative to polymer bulk. The H-bond cross-linked poly(vinyl alcohol) exhibits high yield strength (140 MPa), reduced modulus (22.5 GPa) in nanoindention tests, hardness (0.5 GPa), and great extensibility (40%). More importantly, there exist semiquantitive linear relationships between the number of effective H-bond and macroscale properties. This work suggests a promising methodology of designing advanced materials with exceptional mechanical by adding low amounts (1.0 wt %) of small molecules multiamines serving as H-bond cross-linkers.