113 resultados para Battery anodes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the expected theoretical capacity of 2596 mA h g-1, phosphorus is considered to be the highest capacity anode material for sodium-ion batteries and one of the most attractive anode materials for lithium-ion systems. This work presents a comprehensive study of phosphorus-carbon nanocomposite anodes for both lithium-ion and sodium-ion batteries. The composite electrodes are able to display high initial capacities of approximately 1700 and 1300 mA h g-1 in lithium and sodium half-cells, respectively, when the cells are tested within a larger potential windows of 2.0-0.01 V vs. Li/Li+ and Na/Na+. The level of demonstrated capacity is underpinned by the storage mechanism, based on the transformation of phosphorus to Li3P phase for lithium cells and an incomplete transformation to Na3P phase for sodium cells. The capacity deteriorates upon cycling, which is shown to originate from disintegration of electrodes and their delamination from current collectors by post-cycling ex situ electron microscopy. Stable cyclic performance at the level of ∼700 and ∼350-400 mA h g-1 can be achieved if the potential windows are restricted to 2.0-0.67 V vs. Li/Li+ for lithium and 2-0.33 vs. Na/Na+ for sodium half-cells. The results are critically discussed in light of existing literature reports

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Li0.5Fe2.5O4 nanoparticles of about 80 nm were synthesized through a hydrothermal method, followed by a solid state reaction between LiOH·H2O and Fe2O3. The Li0.5Fe2.5O4 nanoparticles exhibit a remarkable high capacity (up to 1124 mA h g-1), a good cycle stability (650 mA h g-1 after 50 cycles) and excellent coulombic efficiency. © 2014 the Partner Organisations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-energy efficient method is developed for the synthesis of LiFePO4@CNT core-shell nanowire structures. The method consists of two steps: liquid deposition approach to prepare FePO4@CNT core-shell nanowires and solvothermal lithiation to obtain the LiFePO4@CNT core-shell nanowires at a low temperature. The solution phase method can be easily scaled up for commercial application. The performance of the materials produced by this method is evaluated in Li ion batteries. The one-dimensional LiFePO4@CNT nanowires offer a stable and efficient backbone for electron transport. The LiFePO4@CNT core-shell nanowires exhibit a high capacity of 132.8 mAh g-1 at a rate of 0.2C, as well as high rate capability (64.4 mAh g-1 at 20C) for Li ion storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid plasma, produced by nanosecond pulses, provides an efficient and simple way to fabricate a nanocomposite architecture of Co3O4/CNTs from carbon nanotubes (CNTs) and clusters of Co3O4 nanoparticles in deionized water. The crucial feature of the composite's structure is that Co3O4 nanoparticle clusters are uniformly dispersed and anchored to CNT networks in which Co3O4 guarantees high electrochemical reactivity towards sodium, and CNTs provide conductivity and stabilize the anode structure. We demonstrated that the Co3O4/CNT nanocomposite is capable of delivering a stable and high capacity of 403 mA h g(-1) at 50 mA g(-1) after 100 cycles where the sodium uptake/extract is confirmed in the way of reversible conversion reaction by adopting ex situ techniques. The rate capability of the composite is significantly improved and its reversible capacity is measured to be 212 mA h g(-1) at 1.6 A g(-1) and 190 mA h g(-1) at 3.2 A g(-1), respectively. Due to the simple synthesis technique with high electrochemical performance, Co3O4/CNT nanocomposites have great potential as anode materials for sodium-ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis was focused on developing alloy based anode materials for Li-ion and Na-ion batteries. It helps to reduce the size and increase the energy density of the batteries. Furthermore, a novel cathode material was developed for Na-ion batteries which showed good cycling performance over a period of 100 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of high-capacity Li-ion anode materials (conversion reactions with lithium) suffer from poor cycling stability and limited high-rate performance. These issues can be addressed through hybridization of multiple nanostructured components in an electrode. Using a Co3O4-Fe2O3/C system as an example, we demonstrate that the cycling stability and rate performance are improved in a hybrid electrode. The hybrid Co3O4-Fe2O3/C electrode exhibits long-term cycling stability (300 cycles) at a moderate current rate with a retained capacity of approximately 700 mAh g(-1). The reversible capacity of the Co3O4-Fe2O3/C electrode is still about 400 mAh g(-1) (above the theoretical capacity of graphite) at a high current rate of ca. 3 A g(-1), whereas Co3O4-Fe2O3, Fe2O3/C, and Co3O4/C electrodes (used as controls) are unable to operate as effectively under identical testing conditions. To understand the structure-function relationship in the hybrid electrode and the reasons for the enhanced cycling stability, we employed a combination of ex situ and in situ techniques. Our results indicate that the improvements in the hybrid electrode originate from the combination of sequential electrochemical activity of the transition metal oxides with an enhanced electronic conductivity provided by percolating carbon chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 A non-aqueous secondary battery has been constructed by using Zn metal as the anode and chemically synthesised PEDOT as the cathode, with a 1-ethyl-3-methylimidazolium dicyanamide ionic liquid as the electrolyte, which avoids dendritic growth processes on the Zn surface upon charge/discharge cycling. The novel Zn/PEDOT rechargeable cell shows high efficiency and cycling ability, performing over 320 cycles with no indication of short circuit. Both the Zn and PEDOT surfaces showed minimal signs of degradation, suggesting that a Zn/PEDOT electrochemical device would be capable of extended cycle life under numerous charge/discharge cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interconnected microspheres of V2O5 composed of ultra-long nanobelts are synthesized in an environmental friendly way by adopting a conventional anodization process combined with annealing. The synthesis process is simple and low-cost because it does not require any additional chemicals or reagents. Commercial fish-water is used as an electrolyte medium to anodize vanadium foil for the first time. Electron microscopy investigation reveals that each belt consists of numerous nanofibers with free space between them. Therefore, this novel nanostructure demonstrates many outstanding features during electrochemical operation. This structure prevents self-aggregation of active materials and fully utilizes the advantage of active materials by maintaining a large effective contact area between active materials, conductive additives, and electrolyte, which is a key challenge for most nanomaterials. The electrodes exhibit promising electrochemical performance with a stable discharge capacity of 227 mAh·g–1 at 1C after 200 cycles. The rate capability of the electrode is outstanding, and the obtained capacity is as high as 278 at 0.5C, 259 at 1C, 240 at 2C, 206 at 5C, and 166 mAh·g–1 at 10C. Overall, this novel structure could be one of the most favorable nanostructures of vanadium oxide-based cathodes for Li-ion batteries. [Figure not available: see fulltext.]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundamental movement skills (FMS) competence is low in adolescent girls. An assessment tool for teachers is needed to monitor FMS in this demographic. The present study explored whether the Canadian Agility and Movement Skill Assessment (CAMSA) is feasible for use by physical education (PE) teachers of Australian Year 7 girls in a school setting. Surveys, focus group interviews, and direct observation of 18 specialist PE teachers investigated teachers’ perceptions of this tool. Results indicated that the CAMSA was usable in a real-world school setting and was considered a promising means to assess FMS in Year 7 girls. However, future iterations may require minor logistical alterations and further training for teachers on how to utilize the assessment data to enhance teaching practice. These considerations could be used to improve future design, application, and training of the CAMSA in school-based PE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of a Sn-based anode in a potassium cell is reported for the first time. The material is active at low potentials vs. K/K(+), and encouraging capacities of around 150 mA h g(-1) are recorded. Experimental evidence shows that Sn is capable of alloying/de-alloying with potassium in a reversible manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of processing history and morphology is of particular importance for lithium-ion electrolytes for achieving higher ionic conductivities. In this study, single ion conducting poly (4-lithium styrene sulfonic acid) was synthesized by neutralization reaction from polystyrene sulfonic acid, and the effect of morphology and processing method was studied by comparing pelletized, electrospun and gel samples. The PSSLi gels displayed best ionic conductivity, while the pelletized samples showed the worst ionic conductivity. Although electrospinning led to a free standing electrolyte, the lower amount of solvent phase led to lower ionic conductivity when compared to the PSSLi gel. The ionic conductivity at room temperature improved from 6.6 × 10−5 S/cm to 1.4 × 10−3 S/cm by optimizing the processing methodology and the lithium ion concentration. The results show that PSSLi based single ion conducting lithium (SICL) gels are a promising candidate for lithium ion battery application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order for sodium batteries to become a safe, lower cost option for large scale energy storage, minimising the price of all components is important. We report here on the application of a pyrrolidinium room temperature ionic liquid comprising the dicyanamide anion as a successful electrolyte system for sodium metal batteries that does not contain expensive fluorinated species. The effects of plating/stripping of sodium from Na metal electrodes has been investigated in a symmetrical Na | electrolyte | Na configuration at a current density of 10 μA cm− 2. Comparisons are drawn to reference organic electrolytes comprising propylene carbonate-fluoroethylene carbonate. Residual water molecules in the ionic liquid electrolyte are observed to have a significant effect upon the surface film and subsequent favourable plating/stripping behaviour of symmetrical cells and this is explored in detail. An increase of the moisture content from 90 ppm to 400 ppm impedes both electrodeposition and electrodissolution of the Na+/Na. This is investigated at Ni electrodes using cyclic voltammetry at different Na+-salt concentrations to further understand the mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An off-grid photovoltaic power system requires an energy storage system, especially batteries, for mitigation of variability and intermittency problems, and for assured service reliability and availability. The longevity and reliability of such batteries depend on the effectiveness of the charging system. This paper presents the modelling, simulation and hardware implementation of a four-stage switch-mode charger based on the single-ended primary inductance converter. The digital signal processor based controller implements algorithms for the system's power balance control, maximum power point tracking to improve charging speed and efficiency, four-stage optimal charging, and system's protection. The protection algorithm provides over-charge, overdischarge, over-temperature and short circuit protection capabilities. The proposed system has the following advantages: ability to continuously charge the batteries even at reduced solar irradiation, higher efficiency, and use of adaptive thermally compensated set points for optimum performance. A prototype is built and experimental results are presented to validate the simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Riboflavin-responsive, multiple acylcoenzyme A dehydrogenase deficiency (RR-MAD), a lipid storage myopathy, is characterized by, among others, a decrease in fatty acid (FA) ß-oxidation capacity. Muscle uncoupling protein 3 (UCP3) is up-regulated under conditions that either increase the levels of circulating free FA and/or decrease FA ß-oxidation. Using a relatively large cohort of seven RR-MAD patients, we aimed to better characterize the metabolic disturbances of this disease and to explore the possibility that it might increase UCP3 expression. A battery of biochemical and molecular tests were performed, which demonstrated decreases in FA ß-oxidation and in the activities of respiratory chain complexes I and II. These metabolic alterations were associated with increases of 3.1- and 1.7-fold in UCP3 mRNA and protein expression, respectively. All parameters were restored to control values after riboflavin treatment. We postulate that the up-regulation of UCP3 in RR-MAD is due to the accumulation of muscle FA/acylCoA. RR-MAD is an optimal model to support the hypothesis that UCP3 is involved in the outward translocation of an excess of FA from the mitochondria and to show that, in humans, the effects of FA on UCP3 expression are direct and independent of fatty acid ß-oxidation.