37 resultados para BATCH REACTOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

 This report is an investigation of the research literature on Moving Bed Biofilm Reactor (MBBR) wastewater treatment, in particular examining the available literature relating to retrofitting MBBR technology to existing treatment plants and the operating costs of MBBR plants. A primary literature review was conducted using relevant online research databases, and the references listed in the first round of discovered documents were also examined to identify any other useful literature.

This report presents:
• a literature review based on the discovered relevant documents;
• a summary of the main findings; and
• a list of references.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A membrane reactor allows for simultaneous separation and reaction, and thus, can play a good role to produce value-added chemicals. In this work, we demonstrated such a membrane reactor based on fluorite oxide samarium-doped ceria (SDC) using an external short-circuit concept for oxygen permeation. The fluorite phase was employed to impart its high structural stability, while its limited electronic conductivity was overcome by the application of an external short circuit to function the SDC membrane for oxygen transport. On one side of the membrane, i.e., feed side, carbon dioxide decomposition into carbon monoxide and oxygen was carried out with the aid of a Pt or Ag catalyst. The resultant oxygen was concurrently depleted on the membrane surface and transported to the other side of the membrane, favorably shifting this equilibrium-limited reaction to the product side. The transported oxygen on the permeate side with the aid of a GdNi/Al2O3 catalyst was then consumed by the reaction with methane to form syngas, i.e., carbon monoxide and hydrogen. As such, the required driving force for gas transport through the membrane can be sustained by coupling two different reactions in one membrane reactor, whose stability to withstand these different gases at high temperatures is attained in this paper. We also examined the effect of the membrane thickness, oxygen ionic transport rate, and CO2 and CH4 flow rates to the membrane reactor performance. More importantly, here, we proved the feasibility of a highly stable membrane reactor based on an external short circuit as evidenced by achieving the constant performance in CO selectivity, CH4 conversion, CO2 conversion, and O2 flux during 100 h of operation and unaltered membrane structure after this operation together with the coking resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study characterizes the extracellular polymeric substances and bacterial community composition of aerobic granules exposed to cefalexin (CLX). The presence of CLX potentially decreases granular stabilities, resulting in a lowered granule diameter. Chemical oxygen demand and NH4+-N removal efficiencies were slightly decreased and the denitrification process was inhibited with CLX addition. Extracellular polymeric substance contents were significantly increased in aerobic granules exposed to CLX. The shifts of fluorescence intensities and peak locations in 3D-EEM fluorescence spectra indicated changes of EPS components. High-throughput sequencing analysis showed aerobic granules with CLX addition in synthetic wastewater had superior diversity of microbial species, and this was the reason that the level and components of EPS changed. The species richness for bacteria was increased from 341 to 352, which was revealed by Chao1. The Shannon index of diversity rose slightly from 3.59 to 3.73 with CLX addition. The abundance of Proteobacteria significantly decreased, while the abundance of Bacteroidetes and Chloroflexi underwent a highly significant increase in aerobic granules exposed to CLX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Effective bimolecular adsorption of proteins onto solid matrices is characterized by in-depth understanding of the biophysical features essential to optimize the adsorption performance. Results: The adsorption of bovine serum albumin (BSA) onto anion-exchange Q-sepharose solid particulate support was investigated in batch adsorption experiments. Adsorption kinetics and isotherms were developed as a function of key industrially relevant parameters such as polymer loading, stirring speed, buffer pH, protein concentration and the state of protein dispersion (solid/aqueous) in order to optimize binding performance and adsorption capacity. Experimental results showed that the first order rate constant is higher at higher stirring speed, higher polymer loading, and under alkaline conditions, with a corresponding increase in equilibrium adsorption capacity. Increasing the stirring speed and using aqueous dispersion protein system increased the adsorption rate, but the maximum protein adsorption was unaffected. Regardless of the stirring speed, the adsorption capacity of the polymer was 2.8 mg/ml. However, doubling the polymer loading increased the adsorption capacity to 9.4 mg/ml. Conclusions: The result demonstrates that there exists a minimum amount of polymer loading required to achieve maximum protein adsorption capacity under specific process conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015, Springer International Publishing Switzerland. For decades, the microalgae Isochrysis spp. have been widely utilised as a live feed in aquaculture practices. This species possesses a number of favourable characteristics, notably its long-chain omega-3 polyunsaturated fatty acid (LC n-3 PUFA) content; primarily docosahexaenoic acid (DHA, 22:6n-3). This article describes the lipid class content and composition of this microalga grown in batch culture, covering the entirety of lag, log and stationary growth phases. The total lipid was highest in the lag phase (27 pg/cell). Total lipid significantly decreased in the exponential growth (7 pg/cell), then steadily increasing for the remainder of growth. The increase in total lipid was due to the accumulation of neutral lipid in the form of triacylglycerides. The DHA content (pg/cell) of the neutral lipid remained relatively unchanged for the duration of growth, with the influx of fatty acids being primarily myristic and palmitic acids. DHA (pg/cell) was found at relatively uniform amounts across all lipid classes. However, the DHA content as a percentage differed greatly between classes. The polar lipid class had a significantly higher DHA content, which peaked at 38 % of all polar lipid in log growth. The primary PUFA species present in the glycolipid class was stearidonic acid (18:4n-3). This work gives an overview of the lipid content and composition of Isochrysis sp. (T-Iso) over the entirety of its growth under batch culture. The lipid profile for this species at different stages of culture provides a basal data set that is useful for comparative studies using this organism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction interval (PI) is a promising tool for quantifying uncertainties associated with point predictions. Despite its informativeness, the design and deployment of PI-based controller for complex systems is very rare. As a pioneering work, this paper proposes a framework for design and implementation of PI-based controller (PIC) for nonlinear systems. Neural network (NN)-based inverse model within internal model control structure is used to develop the PIC. Firstly, a PI-based model is developed to construct PIs for the system output. This model is then used as an online estimator for PIs. The PIs from this model are fed to the NN inverse model along with other traditional inputs to generate the control signal. The performance of the proposed PIC is examined for two case studies. This includes a nonlinear batch polymerization reactor and a numerical nonlinear plant. Simulation results demonstrated that the proposed PIC tracking performance is better than the traditional NN-based controller.