33 resultados para Autoregressive Time-series


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a GARCH-based unit root test that is flexible enough to account for; (a) trending variables, (b) two endogenous structural breaks, and (c) heteroskedastic data series. Our proposed model is applied to a range of time-series, trending, and heteroskedastic energy variables. Our two main findings are: first, the proposed trend-based GARCH unit root model outperforms a GARCH model without trend; and, second, allowing for a time trend and two endogenous structural breaks are important in practice, for doing so allows us to reject the unit root null hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistically significant association between energy consumption and economic growth is now well established in the literature. However, it still remains an unsettled issue whether economic growth is the cause or effect of energy consumption. The importance of identifying the direction of causality emanates from its relevance in national policy-making issues regarding energy conservation. Energy conservationissue is more important when energy acts as a contributing factor in economic growth than when it is used as a result of higher economic growth. In this backdrop, it is justified to search causal relationship between energy consumption and national output (GDP) of those countries that are expected to have higher energy consumption in future. Evidence shows that countries classified as non-OECD Asia will have the highest growth in energy consumption (3.7 percent) over the period 2003-2030. This forecasted energy consumption in these countries will have significant policy implication in the area of energy conservation. Hence, the present paper attempts to identify the direction of causality between energy consumption and output in the context of six major energy dependent non-OECD Asian countries.However, since the traditional bivariate approach suffers from omitted variable problems (Stern 1993, Masih and Masih, 1996 and Asafu-Adjaye, 2000), this paper employs a trivariate demand side approach consisting of energy consumption, income and prices. The countries selected for this purpose are Bangladesh, China, India, Malaysia, Pakistan and Thailand. Moreover, according to the Energy Information Administration (EIA) data of 2005, these six countries contribute 81.35% of the energyconsumption by all non-OECD Asian countries (aggregate energy consumption of 2005 by all non-OECD Asian countries is 113.60 quadrillion BTU while for these six countries alone the consumption is 92.42 quadrillion BTU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis based on the holistic multiple time series system has been a practical and crucial topic. In this paper, we mainly study a new problem that how the data is produced underneath the multiple time series system, which means how to model time series data generating and evolving rules (here denoted as semantics). We assume that there exist a set of latent states, which are the system basis and make the system run: data generating and evolving. Thus, there are several challenges on the problem: (1) How to detect the latent states; (2) How to learn the rules based on the states; (3) What the semantics can be used for. Hence, a novel correlation field-based semantics learning method is proposed to learn the semantics. In the method, we first detect latent state assignment by comprehensively considering kinds of multiple time series characteristics, which contain tick-by-tick data, temporal ordering, relationship among multiple time series and so on. Then, the semantics are learnt by Bayesian Markov characteristic. Actually, the learned semantics could be applied into various applications, such as prediction or anomaly detection for further analysis. Thus, we propose two algorithms based on the semantics knowledge, which are applied to make next-n step prediction and detect anomalies respectively. Some experiments on real world data sets were conducted to show the efficiency of our proposed method.