40 resultados para Aquatic ecotoxicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predictive frameworks for understanding and describing how animals respond to habitat fragmentation, particularly across edges, have been largely restricted to terrestrial systems. Abundances of zooplankton and meiofauna were measured across seagrasssand edges and the patterns compared with predictive models of edge effects. Artificial seagrass patches were placed on bare sand, and zooplankton and meiofauna were sampled with tube traps at five positions (from patch edges: 12, 60 and 130 cm into seagrass; and 12 and 60 cm onto sand). Position effects consisted of the following three general patterns: (1) increases in abundance around the seagrasssand edge (total abundance and cumaceans); (2) declining abundance from seagrass onto sand (calanoid copepods, harpacticoid copepods and amphipods); and (3) increasing abundance from seagrass onto sand (crustacean nauplii and bivalve larvae). The first two patterns are consistent with resource-distribution models, either as higher resources at the confluence of adjacent habitats or supplementation of resources from high-quality to low-quality habitat. The third pattern is consistent with reductions in zooplankton abundance as a consequence of predation or attenuation of currents by seagrass. The results show that predictive models of edge effects can apply to aquatic animals and that edges are important in structuring zooplankton and meiofauna assemblages in seagrass. © 2010 CSIRO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Aquatic nanotoxicologists and ecotoxicologists have begun to identify the unique properties of the nanomaterials (NMs) that potentially affect the health of wildlife. In this review the scientific aims are to discuss the main challenges nanotoxicologists currently face in aquatic toxicity testing, including the transformations of NMs in aquatic test media (dissolution, aggregation and small molecule interactions), and modes of NM interference (optical interference, adsorption to assay components and generation of reactive oxygen species) on common toxicity assays. Three of the major OECD (Organisation for Economic Co-operation and Development) priority materials, titanium dioxide (TiO2), zinc oxide (ZnO) and silver (Ag) NMs, studied recently by the Natural Sciences and Engineering Research Council of Canada (NSERC), National Research Council of Canada (NRC) and the Business Development Bank of Canada (BDC) Nanotechnology Initiative (NNBNI), a Canadian consortium, have been identified to cause both bulk effect, dissolution-based (i.e. free metal), or NM-specific toxicity in aquatic organisms. TiO2 NMs are most toxic to algae, with toxicity being NM size-dependent and principally associated with binding of the materials to the organism. Conversely, dissolution of Zn and Ag NMs and the subsequent release of their ionic metal counterparts appear to represent the primary mode of toxicity to aquatic organisms for these NMs. In recent years, our understanding of the toxicological properties of these specific OECD relevant materials has increased significantly. Specifically, researchers have begun to alter their experimental design to identify the different behaviour of these materials as colloids and, by introducing appropriate controls and NM characterisation, aquatic nanotoxicologists are now beginning to possess a clearer understanding of the chemical and physical properties of these materials in solution, and how these materials may interact with organisms. Arming nanotoxicologists with this understanding, combined with knowledge of the physics, chemistry and biology of these materials is essential for maintaining the accuracy of all future toxicological assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In clonal plants, vegetative parts may outcompete seeds in the absence of disturbance, limiting the build-up of genotypic diversity through repeated seedling recruitment (RSR). Herbivory may provide disturbance and trigger establishment of strong colonizers (seeds) at the expense of strong competitors (clonal propagules). In the clonal aquatic fennel pondweed Potamogeton pectinatus, two distinct herbivore guilds may modify the dynamics of propagation. In winter, Bewick's swans may deplete patches of tubers, promoting seedling establishment in spring. In summer, seed consumption by waterfowl can reduce the density of viable seeds but grazing may also reduce tuber production and hence facilitate seedling establishment. This study is among the first to experimentally test herbivore impact on plant genotypic diversity. We assess the separate and combined effects of both herbivore guilds on genotypic diversity and structure of fennel pondweed beds. Using microsatellites, we genotyped P. pectinatus from an exclosure experiment and assessed the contribution of herbivory, dispersal and sexual reproduction to the population genetic structure. Despite the predominance of clonal propagation in P. pectinatus, we found considerable genotypic diversity. Within the experimental blocks, kinship among genets decreased with geographic distance, clearly identifying a role for RSR in the maintenance of genotypic diversity within the fennel pondweed beds. However, over a period of five years, none of the herbivory treatments affected genotypic diversity. Hence, sexual reproduction on a local scale is important in this putatively clonal plant and possibly sufficient to ensure a relatively high genotypic diversity even in the absence of herbivores. Although we cannot preclude a role of herbivory in shaping genotypic diversity of a clonal plant, after five years of exclusion of the two investigated herbivore guilds no measurable effect on genotypic diversity was detected. © 2014 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic centres are popular recreational facilities in Australia and other developed countries. These buildings have experienced exponential demand over the past few decades. The growing desire for better indoor environmental quality in aquatic centres has resulted in a marked increase in energy consumption in this sector. With the existence of multiple user groups, achieving thermal comfort has always been challenging. Even though several thermal comfort studies are conducted in other building types, such studies are very limited with respect to aquatic centres. This paper analyses the thermal comfort conditions of various user groups in seven aquatic centres in Australia. Comfort measurements are performed through monitoring environmental parameters and surveying swimmers, staff and spectators. The results revealed the variation of air temperatures among the buildings, resulting in high level of thermal discomfort for the spectators and staff in some of the buildings. The thermal sensation of the staff and spectators had good correlation with the indoor temperatures and PMVs. Altering temperature settings according to the seasons will help to improve the comfort with respect to the adaptation and expectation of the occupants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic centres are popular recreational facilities in Australia and other developed countries. These buildings have experienced exponential demand over the past few decades. The growing desire for better indoor environmental quality in aquatic centres has resulted in a marked increase in energy consumption in this sector. Community expectations in relation to aquatic centres are rising and these spaces are associated with wellness and health. Energy consumption in indoor swimming pool buildings is high due to the high indoor air temperatures, increased ventilation heat losses and the need to disinfect water. This study investigates the energy consumption and indoor environmental quality of seven aquatic centres in Australia. The construction and various energy consuming systems of the facilities are analysed and compared against the energy consumption. Thermal comfort data is collected through measuring the indoor environmental parameters. Building envelopes were found to be leaky in most of the buildings resulting in energy wastage. The main indicators for energy consumption were gross floor area, area of pool surface, and number of visitors. It was found that the set point temperatures were significantly high in some of the buildings resulting in high level of discomfort for the spectators and staff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To study the efficacy of aquatic resistance training on biochemical composition of tibiofemoral cartilage in postmenopausal women with mild knee osteoarthritis (OA).

DESIGN: Eighty seven volunteer postmenopausal women, aged 60-68 years, with mild knee OA (Kellgren-Lawrence grades I/II and knee pain) were recruited and randomly assigned to an intervention (n = 43) and control (n = 44) group. The intervention group participated in 48 supervised aquatic resistance training sessions over 16 weeks while the control group maintained usual level of physical activity. The biochemical composition of the medial and lateral tibiofemoral cartilage was estimated using single-slice transverse relaxation time (T2) mapping and delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC index). Secondary outcomes were cardiorespiratory fitness, isometric knee extension and flexion force and knee injury and OA outcome (KOOS) questionnaire.

RESULTS: After 4-months aquatic training, there was a significant decrease in both T2 -1.2 ms (95% confidence interval (CI): -2.3 to -0.1, P = 0.021) and dGEMRIC index -23 ms (-43 to -3, P = 0.016) in the training group compared to controls in the full thickness posterior region of interest (ROI) of the medial femoral cartilage. Cardiorespiratory fitness significantly improved in the intervention group by 9.8% (P = 0.010).

CONCLUSIONS: Our results suggest that, in postmenopausal women with mild knee OA, the integrity of the collagen-interstitial water environment (T2) of the tibiofemoral cartilage may be responsive to low shear and compressive forces during aquatic resistance training. More research is required to understand the exact nature of acute responses in dGEMRIC index to this type of loading. Further, aquatic resistance training improves cardiorespiratory fitness.