52 resultados para Acrylonitrile rubber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ultrasonic wave on tapping surface of ‘PR107’ rubber tree were studied. Daily production and cumulative production of latex were measured to estimate the effects of ultrasonic wave on latex production. The solid substance content, dry rubber content and mechanical stability of latex were determined to study the effects of ultrasonic wave on latex quality. Results showed that ultrasonic wave could increase both daily and cumulative production of latex and maintain latex basic quality. The daily production of latex was increased and appeared two peaks both in the ultrasound-treated rubber tree and the one with no treatment. The first peak appeared on the fifth day, and the latex production by ultrasound was 212.34 ml and the control was 141.75 ml The second peak appeared with the production 266.59 ml on the seventeenth day by ultrasound, while the control appeared on the thirteenth day with production of 193.5 ml. The latex cumulative production of ultrasound-treated trees was 209.56 ml higher than that of control in one month. There was little change in solid substance content and dry rubber content between different ultrasonic time. The best mechanical stability of latex was obtained by ultrasound-treating the rubber tree for 4-6 min. it was proved that the ultrasound was helpful in improving the latex production and quality. The application of ultrasonic wave on rubber tree is novel, and its mechanism is worth further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the method of external attachment of CFRP to the concrete members is the most effective and economical solution for strengthening and repairing concrete structure in the century, the bonding issue between CFRP and the hosting surface still a challenge for the structural engineers. Many solutions are proposed to overcome the early debonding failure in the strengthened members. This paper reports an ongoing experimental program for testing CFRP retrofitted RC beams and slabs. Fifteen RC beams of dimensions 150x250x2300mm and twelve two- way RC slabs of size 85x1670x1670mm will be strengthened using different types of epoxies, different configurations and variable number of layers of CFRP strips (MBrace-230). Rubber modified epoxy will be used for carbon fibre external attachment using wet lay-up method. Loading frame of 500 kN capacity will be used for beams testing. While for applying uniformly distributed load on the slabs a purpose built attachment will be used. The experimental results will report on the ultimate load, failure mode, mid-span deflection, strains readings in different locations and the ductility for both groups of strengthened beams and slabs. A mathematical model will be developed to predict the behavior of RC beams and two-way slabs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence from past research suggests that behaviours and characteristics related to body dissatisfaction may be associated with greater instability of perceptual body image, possibly due to problems in the integration of body-related multisensory information. We investigated whether people with body dysmorphic disorder (BDD), a condition characterised by body image disturbances, demonstrated enhanced susceptibility to the rubber hand illusion (RHI), which arises as a result of multisensory integration processes when a rubber hand and the participant's hidden real hand are stimulated in synchrony. Overall, differences in RHI experience between the BDD group and healthy and schizophrenia control groups (n = 17 in each) were not significant. RHI strength, however, was positively associated with body dissatisfaction and related tendencies. For the healthy control group, proprioceptive drift towards the rubber hand was observed following synchronous but not asynchronous stimulation, a typical pattern when inducing the RHI. Similar drifts in proprioceptive awareness occurred for the BDD group irrespective of whether stimulation was synchronous or not. These results are discussed in terms of possible abnormalities in visual processing and multisensory integration among people with BDD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizing the electrical properties of polymer nanocomposites is an important strategy to develop high performance solvent sensors. Here we report the synergistic effect of multi walled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) in regulating the sensitivity of the naturally occurring elastomer, natural rubber (NR). Composites were fabricated by dispersing CNTs alone and together with exfoliated RGO sheets (thermally reduced at temperatures of 200 and 600 °C) in NR by a solution blending method. RGO exfoliation and the uniform distribution of fillers in the composites were studied by atomic force microscopy, Fourier transformation infrared spectroscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy. The solvent sensitivity of the composite samples was noted from the sudden variation in electrical conductivity which was due to the breakdown of the filler networks during swelling in different solvents. It was found that the synergy between CNTs and RGO exfoliated at 200 °C imparts maximum sensitivity to NR in recognizing the usually used aromatic laboratory solvents. Mechanical and dynamic mechanical studies reveal efficient filler reinforcement, depending strongly on the nature of filler-elastomer interactions and supports the sensing mechanism. Such interactions were quantitatively determined using the Maier and Göritz model from Payne effect experiments. It is concluded that the polarity induced by RGO addition reduces the interactions between CNTs and ultimately results in the solvent sensitivity. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the bond integrity of unmodified and rubber-modified epoxy used for bonding the carbon fibre sheets to the hosting steel surface was investigated. The rigidity of the bonding agent is one of the factors that have a significant role in the premature failure (debonding) of this application. In order to overcome this issue, a series of experiments were conducted on the steel plates using the epoxy resin modified by CTBN and ATBN reactive liquid polymers, in addition to the unmodified epoxy resin. The interface between the carbon fibre matrix and the hosting surface is subjected to a longitudinal shear force for which the corresponding displacement is recorded. The shear stress-strain relationship for the tested specimen is plotted. The result shows that, the bond behaviour of modified epoxy using CTBN and ATBN reactive liquid polymers was improved in terms of ductility and toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interfacial interaction of composites dominates the properties of polymeric/inorganic nanocomposites. Herein, epoxy and hydroxyl groups are introduced into the natural rubber (NR) molecular chains to anchor oxygenous functional groups on the surface of graphene oxide (GO) sheets and therefore enhance the interfacial interaction between GO and rubber. From the morphological observation and interaction analysis, it is found that epoxidized natural rubber (ENR) latex particles are assembled onto the surfaces of GO sheets by employing hydrogen bonding interaction as driving force. This self-assembly depresses restacking and agglomeration of GO sheets and leads to homogenous dispersion of GO within ENR matrix. The formation of hydrogen bonding interface between ENR and GO demonstrates a significant reinforcement for the ENR host. Compared with those of pure ENR, the composite with 0.7 wt% GO loading receives 87% increase in tensile strength and 8.7 fold increase in modulus at 200% elongation after static in-situ vulcanization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rubber tree (Hevea brasiliensis) latex, the source of natural rubber, is synthesised in the cytoplasm of laticifers. Efficient water inflow into laticifers is crucial for latex flow and production since it is the determinant of the total solid content of latex and its fluidity after tapping. As the mature laticifer vessel rings are devoid of plasmodesmata, water exchange between laticifers and surrounding cells is believed to be governed by plasma membrane intrinsic proteins (PIPs). To identify the most important PIP aquaporin in the water balance of laticifers, the transcriptional profiles of ten-latex-expressed PIPs were analysed. One of the most abundant transcripts, designated HbPIP2;3, was characterised in this study. When tested in Xenopus laevis oocytes HbPIP2;3 showed a high efficiency in increasing plasmalemma water conductance. Expression analysis indicated that the HbPIP2;3 gene was preferentially expressed in latex, and the transcripts were up-regulated by both wounding and exogenously applied Ethrel (a commonly-used ethylene releaser). Although regular tapping up-regulated the expression of HbPIP2;3 during the first few tappings of the virginal rubber trees, the transcriptional kinetics of HbPIP2;3 to Ethrel stimulation in the regularly tapped tree exhibited a similar pattern to that of the previously reported HbPIP2;1 in the virginal rubber trees. Furthermore, the mRNA level of HbPIP2;3 was associated with clonal yield potential and the Ethrel stimulation response. Together, these results have revealed the central regulatory role of HbPIP2;3 in laticifer water balance and ethylene stimulation of latex production in Hevea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G′) became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural rubber latex (NRL) from Hevea brasiliensis was used as a matrix to synthesize gold nanoparticles (AuNPs), leading to an organic-inorganic hybrid latex of NRL-supported AuNPs (AuNPs@NRL). The in situ and environmentally friendly preparation of AuNPs in an NRL matrix was developed by thermal treatment without using any other reducing agents or stabilizers because natural rubber particles and non-rubber components present in serum can serve as supporters for the synthesized AuNPs. As a result, the nanosized and well-dispersed AuNPs not only are decorated on the surface of natural rubber particles, but also can be found in the serum of NRL. The size of the AuNPs presented in NRL matrix can be controlled by adjusting the concentration of NRL. Furthermore, the flexible surface-enhanced Raman scattering (SERS) substrates made from the AuNPs@NRL through vacuum filtration presented good enhancement of the Raman probe molecule of 4-mercaptopyridine and outstanding SERS reproducibility. The capability of synthesizing the bio-supported nanohybrid latex provides a novel green and simple approach for the fabrication of flexible and effective SERS substrates.