32 resultados para ARYL-GRIGNARD


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulating evidence, from animal models and human observational studies, implicates the in utero (and early postnatal) environment in the 'programming' of risk for a variety of adverse outcomes and health trajectories. The modern environment is replete with man-made compounds such as plastic product chemicals (PPC), including phenols and phthalates. Evidence from several human cohorts implicates exposure to these chemicals in adverse offspring neurodevelopment, though a direct causal relationship has not been firmly established. In this review we consider a potential causal pathway that encompasses epigenetic human variation, and how we might test this mechanistic hypothesis in human studies. In the first part of this report we outline how PPCs induce epigenetic change, focusing on the brain derived neurotrophic factor (BDNF) gene, a key regulator of neurodevelopment. Further, we discuss the role of the epigenetics of BDNF and other genes in neurodevelopment and the emerging human evidence of an association between phthalate exposure and adverse offspring neurodevelopment. We discuss aspects of epidemiological and molecular study design and analysis that could be employed to strengthen the level of human evidence to infer causality. We undertake this using an exemplar recent research example: maternal prenatal smoking, linked to methylation change at the aryl hydrocarbon receptor repressor (AHRR) gene at birth, now shown to mediate some of the effects of maternal smoking on birth weight. Characterizing the relationship between the modern environment and the human molecular pathways underpinning its impact on early development is paramount to understanding the public health significance of modern day chemical exposures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis and spectroscopic properties of seven new dibutyltin(IV) compounds of 2-{(E)-4-hydroxy-3-[(E)-4-(aryl)iminomethyl]phenyldiazenyl}benzoic acids (L(n)HH'; n=2-8) with general formula {[Bu2Sn(L(n)H)]2O}2 (1-7) are reported. The compounds were characterized by elemental analysis and by UV-Visible, fluorescence, IR, (1)H, (13)C and (119)Sn NMR spectroscopies. Solid state structures of dibutyltin(IV) compounds 1-3, 6 and 7 were accomplished from single crystal X-ray crystallography which reveal the common ladder-type structure with two endo- and two exo-Sn atoms. The redox properties of L(n)HH' (n=2-4, 7 and 8) and their diorganotin(IV) compounds 1-3, 6 and 7 were also investigated by cyclic voltammetry. In general, the dibutyltin(IV) derivatives exhibited significant in vitro cytotoxic potency towards A375 (melanoma) and HCT116 (colon carcinoma) cell lines as determined by several experiments, like Live and Dead assay, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay, LDH (lactate dehydrogenase), cleavage of caspases and PARP (poly(ADP-ribose)polymerase), and DNA fragmentation. Dibutyltin(IV) compounds increase cell death without cytolysis and decreases membrane fluidity, without interfering with p53. Among the dibutyltin(IV) compounds, compound 6 was found to be the most potent, with an IC50 value of 78nM. A mechanism of action for tumor cell death is proposed.