42 resultados para 291503 Biomaterials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of tissue engineering scaffolds is a well-established field that has gained recent prominence for the in vivo repair of a variety of tissue types. Recently, increasing levels of sophistication have been engineered into adjuvant scaffolds facilitating the concomitant presentation of a variety of stimuli (both physical and biochemical) to create a range of favourable cellular microenvironments. It is here that self-assembling peptide scaffolds have shown considerable promise as functional biomaterials, as they are not only formed from peptides that are physiologically relevant, but through molecular recognition can offer synergy between the presentation of biochemical and physio-chemical cues. This is achieved through the utilisation of a unique, highly ordered, nano- to microscale 3-D morphology to deliver mechanical and topographical properties to improve, augment or replace physiological function. Here, we will review the structures and forces underpinning the formation of self-assembling scaffolds, and their application in vivo for a variety of tissue types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell based therapeutics is one of the most rapidly advancing medical fields, bringing together a range of fields including transplantation, tissue engineering and regeneration, biomaterials and stem cell biology. However, traditional cell-based therapeutics have many limitations, one of which is their harmful effects exhibited on healthy body cells due to their lack of specificity. Nanomedicine is providing an alternative treatment strategy that is more targeted and specific to a range of diseases. Varying from polymers conjugated with drugs or tissue targeting molecules, to proteins encapsulated within a polymer shell, nanomedicine will without a doubt play a major role in designing effective cell-based therapeutics that can overcome certain classical problems. These may include from addressing the problem of non-specificity of contemporary treatments to overcoming mechanical barriers, such as crossing cell membranes. This review summarises the recent work on nano-based cell therapy as a regenerative agent and as a therapeutic for cancer and neurological diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Articular cartilage is an example of a highly efficacious water-based, natural lubrication system that is optimized to provide low friction and wear protection at both low and high loads and sliding velocities. One of the secrets of cartilage's superior tribology comes from a unique, multimodal lubrication strategy consisting of both a fluid pressurization mediated lubrication mechanism and a boundary lubrication mechanism supported by surface bound macromolecules. Using a reconstituted network of highly interconnected cellulose fibers and simple modification through the immobilization of polyelectrolytes, we have recreated many of the mechanical and chemical properties of cartilage and the cartilage lubrication system to produce a purely synthetic material system that exhibits some of the same lubrication mechanisms, time dependent friction response, and high wear resistance as natural cartilage tissue. Friction and wear studies demonstrate how the properties of the cellulose fiber network can be used to control and optimize the lubrication and wear resistance of the material surfaces and highlight what key features of cartilage should be duplicated in order to produce a cartilage-mimetic lubrication system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focused on the synthesis and self-assembly of novel block copolymers for the purpose of drug delivery. The block copolymers achieved comprise of a synthetic block and a peptide block and self-assemble into nano sized particles which can act as drug containers.