34 resultados para 030601 Catalysis and Mechanisms of Reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between process parameters and structural transformations in the fibres at each stage of the carbon fibre manufacturing process play a crucial role in developing high performance carbon fibres. Here we report a systematic method which uses the combination of Taguchi approach and scientific evaluation techniques to establish these relationships for the initial stage of thermal stabilization. Density, cyclization index and fraction of reacted nitriles of a precursor containing acrylonitrile, methacrylate and itaconic acid (AN/MA/IA) were used to assess the progress of stabilization in the fibres with respect to various combinations of process parameters. The extent of progress of stabilization improved with increase in temperature (from 225 to 235 °C) and time (from 12 to 24 min) whereas an opposite trend was observed with increase in the tension on the fibres from (1600-2550 cN). According to optical microscopy, radial heterogeneity was observed in the fibres treated at 235 °C. Interestingly, we were able to identify the existence of heterogeneous modulus distribution from skin to core of the precursor fibres which was further transferred to treated fibres. The overall radial modulus of treated fibres was higher than the precursor fibres. In contrast to the literature, the fracture morphology of the fibre samples indicated that initiation of crack is caused by surface defects rather than radial heterogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel phosphonyl-substituted ferrocene derivatives [Fe(η(5) -Cp)(η(5) -C5 H3 {P(O)(O-iPr)2 }2 -1,2)] (Fc(1,2) ) and [Fe{η(5) -C5 H4 P(O)(O-iPr)2 }2 ] (Fc(1,1') ) react with SnCl2 , SnCl4 , and SnPh2 Cl2 , giving the corresponding complexes [(Fc(1,2) )2 SnCl][SnCl3 ] (1), [{(Fc(1,1') )SnCl2 }n ] (2), [(Fc(1,1') )SnCl4 ] (3), [{(Fc(1,1') )SnPh2 Cl2 }n ] (4), and [(Fc(1,2) )SnCl4 ] (5), respectively. The compounds are characterized by elemental analyses, (1) H, (13) C, (31) P, (119) Sn NMR and IR spectroscopy, (31) P and (119) Sn CP-MAS NMR spectroscopy, cyclovoltammetry, electrospray ionization mass spectrometry, and single-crystal as well as powder X-ray diffraction analyses. The experimental work is accompanied by DFT calculations, which help to shed light on the origin for the different reaction behavior of Fc(1,1') and Fc(1,2) towards tin(II) chloride.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additive Manufacturing (AM) includes a range of approaches that correlate with computer aided design (CAD) and manufacturing by fabrication via precise layers and is a promising method for the production of medical tools. In this study, different aspects and mechanisms of solidification for curved surfaces based on equilibrium at curved interfaces, Monge patch, interfacial and Gibbs energy will be discussed. Also, the effect of capillarity, geometry, substrate temperature, cooling rate and scanning parameters in the solidification of a prosthetic acetabular cup (PAC) using selective laser melting (SLM) is analysed. The contributions of this work are analysing solidification and effective factors in this process to produce parts with a higher quality and mechanical properties such as strength, strain, porosity, relative density and hardness. Results indicate that due to the surface to volume (S/V) ratio, and the increasing effect of the radius on Monge patch, thermal stresses and surface forces are more prevalent on outer surfaces. Moreover, solidification and mechanical properties are related to capillarity, geometry, substrate temperature, cooling rate, scanning power and speed. The results also indicate the interaction of solute diffusion and heat transfer with interatomic forces in large S/V ratio and at small scales tend to improve solidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AISI H13 tool steel discs were pulsed plasma nitrided during different times at a constant temperature of 400 °C. Wear tests were performed in order to study the acting wear mechanisms. The samples were characterized by X-ray diffraction, scanning electron microscopy and hardness measurements. The results showed that longer nitriding times reduce the wear volumes. The friction coefficient was 0.20 ± 0.05 for all tested conditions and depends strongly on the presence of debris. After wear tests, the wear tracks were characterized by optical and scanning electron microscopy and the wear mechanisms were observed to change from low cycle fatigue or plastic shakedown to long cycle fatigue. These mechanisms were correlated to the microstructure and hardness of the nitrided layer.