72 resultados para wearable sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique is here presented, based on inverse opal metal oxide structures for the production of high quality macro and meso-porous structures for gas sensing. Taking advantage of a sol-gel templated approach. different mixed semiconducting oxides with high surface area, commonly used in chemical sensing application, were synthesized. In this work we report the
comparison between SnO2 and SnO2:Zn. As witnessed by Scanning and Transmission Electron Microscopy (SEM and TEM) analyses and by Powder x-ray Diffraction (PX RD), highly ordered meso-porous structures were formed with oxide crystalline size never exceeding 20 nm . The filled templates. in form of thick films, were bound to allumina substrate with Pt interdigitated contacts
and Pt heater, through in situ calcination, in order to perform standard electrical characterization. Pollutant gases like CO and NO2 and methanol. as interfering gas, were used for the targeted electrical gas tests. All samples showed low detection limits towards both reducing and oxidizing species in low temperature measurements. Moreover, the addition of high molar percentages of Zn( II) affected the beha viour of electrical response improv ing the se lecti vity of the proposed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4-amino-1,8-naphthalimide based chemosensors 2, 4 and 6 show striking green-to-purple colour changes due to the deprotonation of the 4-amino moiety on interaction with strongly basic anions such as F: these colour changes reverse gradually with time due to the fixation of atmospheric CO2 (as HCO3) yielding 1:1 adducts as demonstrated by X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This critical review focuses on the development of anion sensors, being either fluorescent and/or colorimetric, based on the use of the 1,8-naphthalimide structure; a highly versatile building unit that absorbs and emits at long wavelengths. The review commences with a short description of the most commonly used design principles employed in chemosensors, followed by a discussion on the photophysical properties of the 4-amino-1,8-naphthalimide structure which has been most commonly employed in both cation and anion sensing to date. This is followed by a review of the current state of the art in naphthalimide-based anion sensing, where systems using ureas, thioureas and amides as hydrogen-bonding receptors, as well as charged receptors have been used for anion sensing in both organic and aqueous solutions, or within various polymeric networks, such as hydrogels. The review concludes with some current and future perspectives including the use of the naphthalimides for sensing small biomolecules, such as amino acids, as well as probes for incorporation and binding to proteins; and for the recognition/sensing of polyanions such as DNA, and their potential use as novel therapeutic and diagnostic agents (95 references).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modification of electrodes with the tripeptide Gly–Gly–His for the detection of copper in water samples is described in detail. The tripeptide modified electrode was prepared by first self-assembling 3-mercaptopropionic acid (MPA) onto the gold electrode followed by covalent attachment of the tripeptide to the self-assembled monolayer using carbodiimide coupling. The electrodes were characterized using electrochemistry, a newly developed mass-spectrometry method and quantum mechanical calculations. The mass spectrometry confirmed the modification to proceed as expected with peptide bonds formed between the carboxylic acids of the MPA and the terminal amine of the peptide. Electrochemical measurements indicated that approximately half the MPA molecules in a SAM are modified with the peptide. The peptide modified electrodes exhibited high sensitivity to copper which is attributed to the stable 4N coordinate complex the peptide formed around the metal ion to give copper the preferred tetragonal coordination. The formation of a 4 coordinate complex was predicted using quantum mechanical calculation and confirmed using mass spectrometry. The adsorption of the copper to the peptide modified electrode was consistent with a Langmuir isotherm with a binding constant of (8.1 ± 0.4) 1010 M−1 at 25 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amino acids and peptides are known to bind metal ions, in some cases very strongly. There are only a few examples of exploiting this binding in sensors. The review covers the current literature on the interaction of peptides and metals and the electrochemistry of bound metal ions. Peptides may be covalently attached to surfaces. Of particular interest is the attachment to gold via sulfur linkages. Sulfur-containing peptides (eg cysteine) may be adsorbed directly, while any amino group can be covalently attached to a carboxylic acid-terminated thiol. Once at a surface, the possibility for using the attached peptide as a sensor for metal ions becomes realised. Results from the authors’ laboratory and elsewhere have shown the potential for selective monitoring of metal ions at ppt levels. Examples of the use of poly-aspartic acid and the copper binding peptide Gly-Gly-His for detecting copper ions are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylinder-planar Ge waveguides are being developed as evanescent-wave sensors for chemical microanalysis. The only non-planar surface is a cylinder section having a 300-mm radius of curvature. This confers a symmetric taper, allowing for direct coupling into and out of the waveguide's 1-mm2 end faces while obtaining multiple reflections at the central <30-μm-thick sensing region. Ray-optic calculations indicate that the propagation angle at the central minimum has a strong nonlinear dependence on both angle and vertical position of the input ray. This results in rather inefficient coupling of input light into the off-axis modes that are most useful for evanescent-wave absorption spectroscopy. Mode-specific performance of the cylinder-planar waveguides has also been investigated experimentally. As compared to a blackbody source, the much greater brightness of synchrotron-generated infrared (IR) radiation allows a similar total energy throughput, but restricted to a smaller fraction of the allowed waveguide modes. However, such angle-selective excitation results in a strong oscillatory interference pattern in the transmission spectra. These spectral oscillations are the principal technical limitation on using synchrotron radiation to measure evanescent-wave absorption spectra with the thin waveguides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symmetrically tapered planar IR waveguides have been fabricated by starting with a ZnS coated concave piece of single-crystal Ge, embedding it in an epoxide resin as a supporting substrate, and then grinding and polishing a planar surface until the thickness at the taper minimum is <30 μm. Such tapering is expected to enhance a waveguide's sensitivity as an evanescent wave sensor by maximizing the amount of evanescent wave energy present at the thinnest part of the waveguide. As predicted by theory, the surface sensitivity, i.e., the absorbance signal per molecule in contact with the sensing region, increases with decreasing thickness of the tapered region even while the total energy throughput decreases. The signal-to-noise ratio obtained depends very strongly on the quality of the polished surfaces of the waveguides. The surface sensitivity is superior to that obtained with a commercial Ge attenuated total reflection (ATR) accessory for several types of sample, including thin films (<10 ng) and small volumes (<1 μL) of volatile solvents. By using the waveguides, light-induced structural changes in the protein bacteriorhodopsin were observable using samples as small as ∼50 pmol (∼1 μg). In addition, the waveguide sensors can reveal the surface compositions on a single human hair, pointing to their promise as a tool for forensic fiber analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PIM systems help organise people’s lives by providing address book, schedule and task management facilities. Current PIM’s manage this information by collecting and storing it as textual data. With the advent of the wearable computer, using text only is no longer an efficient and convenient mechanism for managing personal information. A wearable computer should use data from various sensors (video, audio, location, environmental, user state) to organise personal information. In this paper we examine how audio can be used to enhance the facilities provided by text-only PIM’s and present an example implementation of an audio based wearable PIM (wPIM) that has the capability of storing and retrieving PIM information as audio recordings. The results of the user evaluation we conducted, which was carried out outside of the laboratory, suggests that users strongly accept audio as a way to manage their personal information and to augment their memory, supporting our hypothesis that audio enhances wearable personal information management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People with special medical monitoring needs can, these days, be sent home and remotely monitored through the use of data logging medical sensors and a transmission base-station. While this can improve quality of life by allowing the patient to spend most of their time at home, most current technologies rely on hardwired landline technology or expensive mobile data transmissions to transmit data to a medical facility. The aim of this paper is to investigate and develop an approach to increase the freedom of a monitored patient and decrease costs by utilising mobile technologies and SMS messaging to transmit data from patient to medico. To this end, we evaluated the capabilities of SMS and propose a generic communications protocol which can work within the constraints of the SMS format, but provide the necessary redundancy and robustness to be used for the transmission of non-critical medical telemetry from data logging medical sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this review we highlight recent advances in the understanding of biosilica production, biomodification of diatom frustules and their subsequent applications in bio/chemical sensors, and as a model membrane for filtration and separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the coordinated use of video and audio cues to capture and index surveillance events with multimodal labels. The focus of this paper is the development of a joint-sensor calibration technique that uses audio-visual observations to improve the calibration process. One significant feature of this approach is the ability to continuously check and update the calibration status of the sensor suite, making it resilient to independent drift in the individual sensors. We present scenarios in which this system is used to enhance surveillance.