26 resultados para wallaby


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study has utilised comparative functional genomics to exploit animal models with extreme adaptation to lactation to identify candidate genes that specifically regulate protein synthesis in the cow mammary gland. Increasing milk protein production is valuable to the dairy industry. The lactation strategies of both the Cape fur seal (Artocephalus pusillus pusillus) and the tammar wallaby (Macropus eugenii) include periods of high rates of milk protein synthesis during an established lactation and therefore offer unique models to target genes that specifically regulate milk protein synthesis. Global changes in mammary gene expression in the Cape fur seal, tammar wallaby, and the cow (Bos taurus) were assessed using microarray analysis. The folate receptor α (FOLR1) showed the greatest change in gene expression in all three species [cow 12.7-fold (n = 3), fur seal 15.4-fold (n = 1), tammar 2.4-fold (n = 4)] at periods of increased milk protein production. This compliments previous reports that folate is important for milk protein synthesis and suggests FOLR1 may be a key regulatory point of folate metabolism for milk protein synthesis within mammary epithelial cells (lactocytes). These data may have important implications for the dairy industry to develop strategies to increase milk protein production in cows. This study illustrates the potential of comparative genomics to target genes of interest to the scientific community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of milk in providing nutrition for the young is well established. However, it is becoming apparent that milk has a more comprehensive role in programming and regulating growth and development of the suckled young, and an autocrine impact on the mammary gland so that it functions appropriately during the lactation cycle. This central role of milk is best studied in animal models, such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Thus, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland. Inappropriate timing of these signalling events in mammals may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. The tammar is emerging as an attractive model to better understand the role of milk factors in these processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RNA sequencing and gene expression data related to lactation (mammary gland, milk and their sub compartments) obtained in a number of species (buffalo, mice, human, seal, wallaby, platypus).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 This thesis aimed to exploit the unique reproductive strategy of marsupials such as the tammar wallaby to prove that milk may regulate postnatal growth and development of organs such as the stomach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 This project focused on the novel S100A19 protein, expressed exclusively in marsupials and monotremes, identifying it as an important component of the innate immune system. Data showed that S100A19 is differentially regulated in the pouch and mammary gland of the wallaby to protect the infant when most susceptible to infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marsupials are believed to be the only non-primate mammals with both trichromatic and dichromatic color vision. The diversity of color vision systems present in marsupials remains mostly unexplored. Marsupials occupy a diverse range of habitats, which may have led to considerable variation in the presence, density, distribution, and spectral sensitivity of retinal photoreceptors. In this study we analyzed the distribution of photoreceptors in the common brushtail possum (Trichosurus vulpecula). Immunohistochemistry in wholemounts revealed three cone subpopulations recognized within two spectrally distinct cone classes. Long-wavelength sensitive (LWS) single cones were the largest cone subgroup (67-86%), and formed a weak horizontal visual streak (peak density 2,106 ± 435/mm2) across the central retina. LWS double cones were strongly concentrated ventrally (569 ± 66/mm2), and created a "negative" visual streak (134 ± 45/mm2) in the central retina. The strong regionalization between LWS cone topographies suggests differing visual functions. Short-wavelength sensitive (SWS) cones were present in much lower densities (3-10%), mostly located ventrally (179 ± 101/mm2). A minority population of cones (0-2.4%) remained unlabeled by both SWS- and LWS-specific antibodies, and may represent another cone population. Microspectrophotometry of LWS cone and rod visual pigments shows peak spectral sensitivities at 544 nm and 500 nm, respectively. Cone to ganglion cell convergences remain low and constant across the retina, thereby maintaining good visual acuity, but poor contrast sensitivity during photopic vision. Given that brushtail possums are so strongly nocturnal, we hypothesize that their acuity is set by the scotopic visual system, and have minimized the number of cones necessary to serve the ganglion cells for photopic vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 The project has exploited an Australian marsupial, tammar wallaby, as an experimental model to understand lung development. This research has focused on identifying the factors that regulate lung development and to develop new intervention therapies to improve health outcomes in human premature and low birth weight babies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dingoes/wild dogs (Canis dingo/familiaris) and red foxes (Vulpes vulpes) are widespread carnivores in southern Australia and are controlled to reduce predation on domestic livestock and native fauna. We used the occurrence of food items in 5875 dingo/wild dog scats and 11,569 fox scats to evaluate interspecific and geographic differences in the diets of these species within nine regions of Victoria, south-eastern Australia. The nine regions encompass a wide variety of ecosystems. Diet overlap between dingoes/wild dogs and foxes varied among regions, from low to near complete overlap. The diet of foxes was broader than dingoes/wild dogs in all but three regions, with the former usually containing more insects, reptiles and plant material. By contrast, dingoes/wild dogs more regularly consumed larger mammals, supporting the hypothesis that niche partitioning occurs on the basis of mammalian prey size. The key mammalian food items for dingoes/wild dogs across all regions were black wallaby (Wallabia bicolor), brushtail possum species (Trichosurus spp.), common wombat (Vombatus ursinus), sambar deer (Rusa unicolor), cattle (Bos taurus) and European rabbit (Oryctolagus cuniculus). The key mammalian food items for foxes across all regions were European rabbit, sheep (Ovis aries) and house mouse (Mus musculus). Foxes consumed 6.1 times the number of individuals of threatened Critical Weight Range native mammal species than did dingoes/wild dogs. The occurrence of intraguild predation was asymmetrical; dingoes/wild dogs consumed greater biomass of the smaller fox. The substantial geographic variation in diet indicates that dingoes/wild dogs and foxes alter their diet in accordance with changing food availability. We provide checklists of taxa recorded in the diets of dingoes/wild dogs and foxes as a resource for managers and researchers wishing to understand the potential impacts of policy and management decisions on dingoes/wild dogs, foxes and the food resources they interact with.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: What determines mammal occurrence across wildland-urban edges? A better understanding of the variables involved will help update edge effects theory and improve our ability to conserve biota in urbanizing landscapes. Objectives: For the first time, we tested whether the occurrence of mammals across urban-forest edges and forest interiors was best predicted by: (1) edge variables (i.e. edge type and distance to an urban boundary), (2) local habitat structure (e.g. proportion of understory cover), or (3) edge variables after accounting for local habitat structure. Methods: Using 77 camera stations in South-Eastern Australia, we quantified the factors influencing the occurrence of five native mammals (brown antechinus, bush rat, common brushtail possum, black wallaby and long-nosed bandicoot) and three non-native mammals (red fox, cat, and dog). Results: The occurrence of most native and non-native mammals was best predicted by local habitat structure rather than by edge variables. Although edge variables had effects on most species occurrences, local habitat structure outweighed the impacts of edge effects. Conclusions: Our findings are important for management and urban planning as they suggest that local-scale management of habitat and habitat retention at urban edges will mitigate urban impacts on fauna. Our work reveals a critical mismatch in the spatial scale of predictive variables commonly used in edge effects models (edge types and distance to a boundary) compared with the smaller scale of local habitat variables, which underlie most species occurrence. We emphasize the need to consider heterogeneity within patches in predictive frameworks of edge effects.