32 resultados para visual pattern recognition network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neurone model (the FORMON) is proposed which provides a mathematical explanation for a range of psychological phenomena and has potential in Artificial Intelligence applications. A general definition of organisation in terms of entropy and information is formulated. The concept of microcodes is introduced to describe the physical nature of organisation. Spatio-temporal pattern acquisition and processing functions attributable to individual neurones are reviewed. The criterion for self-organisation in a neurone is determined as the maximisation of mutual organisation. A feedback control system is proposed to satisfy this criterion and provide an integrated long-term memory of spatio-temporal pattern. This pattern acquisition system is shown to be applicable to dendritic pattern recognition and axonal pattern generation. Provision is also made for adaptation, short-term memory and operant learning. An electro-chemical model of transmission and processing of neural signals is outlined to provide the pattern acquisition functions of the Formon model. A transverse magnetic mode of electrotonic propagation is postulated in addition to the transverse electromagnetic mode. Configurations of the Formon are categorised in terms of possible pattern processing functions. Connective architectures are proposed as self-organising models of acquisitive semantic and syntactic networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DDoS attack traffic is difficult to differentiate from legitimate network traffic during transit from the attacker, or zombies, to the victim. In this paper, we use the theory of network self-similarity to differentiate DDoS flooding attack traffic from legitimate self-similar traffic in the network. We observed that DDoS traffic causes a strange attractor to develop in the pattern of network traffic. From this observation, we developed a neural network detector trained by our DDoS prediction algorithm. Our preliminary experiments and analysis indicate that our proposed chaotic model can accurately and effectively detect DDoS attack traffic. Our approach has the potential to not only detect attack traffic during transit, but to also filter it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an intelligent clothing framework for human daily activity recognition using a single waist-worn tri-axial accelerometer sensor coupled with a robust pattern recognition system. The activity recognition algorithm is realized to distinguish six different physical activities through three major steps: acceleration signal collection/pre-processing, wavelet-based principle component analysis, and a support vector machine classifier. The proposed activity recognition method has been experimentally validated through two batches of trials with an overall mean classification accuracy of 95.25 and 94.87%, respectively. These results suggest that the intelligent clothing is not only able to learn the activity patterns but also capable of generalizing new data from both known and unknown subjects. This enables the proposed intelligent clothing to be applied in a comfortable and in situ assessment of human physical activities, which would open up new market segments to the textile industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel driver verification algorithm based on the recognition of handgrip patterns on steering wheel. A pressure sensitive mat mounted on a steering wheel is employed to collect a series of pressure images exerted by the hands of the drivers who intend to start the vehicle. Then, feature extraction from those images is carried out through two major steps: Quad-Tree-based multi-resolution decomposition on the images and Principle Component Analysis (PCA)-based dimension reduction, followed by implementing a likelihood-ratio classifier to distinguish drivers into known or unknown ones. The experimental results obtained in this study show that the mean acceptance rates of 78.15% and 78.22% for the trained subjects and the mean rejection rates of 93.92% and 90.93% to the un-trained ones are achieved in two trials, respectively. It can be concluded that the driver verification approach based on the handgrip recognition on steering wheel is promising and will be further explored in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Offline handwritten recognition is an important automated process in pattern recognition and computer vision field. This paper presents an approach of polar coordinate-based handwritten recognition system involving Support Vector Machines (SVM) classification methodology to achieve high recognition performance. We provide comparison and evaluation for zoning feature extraction methods applied in Polar system. The recognition results we proposed were trained and tested by using SVM with a set of 650 handwritten character images. All the input images are segmented (isolated) handwritten characters. Compared with Cartesian based handwritten recognition system, the recognition rate is more stable and improved up to 86.63%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the concept of film pace expressed through audio to analyse the film at a semantic level. We use domain knowledge to derive a number of measures for film audio pace. We then apply the audio pace to examine two semantic concepts: counterpoint and narrative structure. Counterpoint is a method used to highlight a salient event by contrasting the visual and audio aspects of a film. We divide narrative structure into visual narration, action, and audio narration, plot development. We hypothesise that changes in the narrative structure signal a change in the audio pace. We then test this hypothesis using eight films of varying genres. A pattern was established linking the audio pace features, guided by the properties of the audio energy, to the narrative structure. The method was successful in determining the narrative structure for seven of the films, achieving an overall precision of 76.4% and recall of 80.3%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We observe that the local energy is the pre-envelope for analytic function. The maxima and phase of this function can be used to compute and classify visual features such as motion and stereo disparity, texture, etc. We examine the construction of new filters for computing Local Energy, and compare these filters with the Gabor filters and the three-point-filter of Venkatesh and Owens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sleep stage identification is the first step in modern sleep disorder diagnostics process. K-complex is an indicator for the sleep stage 2. However, due to the ambiguity of the translation of the medical standards into a computer-based procedure, reliability of automated K-complex detection from the EEG wave is still far from expectation. More specifically, there are some significant barriers to the research of automatic K-complex detection. First, there is no adequate description of K-complex that makes it difficult to develop automatic detection algorithm. Second, human experts only provided the label for whether a whole EEG segment contains K-complex or not, rather than individual labels for each subsegment. These barriers render most pattern recognition algorithms inapplicable in detecting K-complex. In this paper, we attempt to address these two challenges, by designing a new feature extraction method that can transform visual features of the EEG wave with any length into mathematical representation and proposing a hybrid-synergic machine learning method to build a K-complex classifier. The tenfold cross-validation results indicate that both the accuracy and the precision of this proposed model are at least as good as a human expert in K-complex detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of unnatural control chart patterns (CCPs) from manufacturing process measurements is a critical task in quality control as these patterns indicate that the manufacturing process is out-of-control. Recently, there have been numerous efforts in developing pattern recognition and classification methods based on artificial neural network to automatically recognize unnatural patterns. Most of them assume that a single type of unnatural pattern exists in process data. Due to this restrictive assumption, severe performance degradations are observed in these methods when unnatural concurrent CCPs present in process data. To address this problem, this paper proposes a novel approach based on singular spectrum analysis (SSA) and learning vector quantization network to identify concurrent CCPs. The main advantage of the proposed method is that it can be applied to the identification of concurrent CCPs in univariate manufacturing processes. Moreover, there are no permutation and scaling ambiguities in the CCPs recovered by the SSA. These desirable features make the proposed algorithm an attractive alternative for the identification of concurrent CCPs. Computer simulations and a real application for aluminium smelting processes confirm the superior performance of proposed algorithm for sets of typical concurrent CCPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we compare two generative models including Gaussian Mixture Model (GMM) and Hidden Markov Model (HMM) with Support Vector Machine (SVM) classifier for the recognition of six human daily activity (i.e., standing, walking, running, jumping, falling, sitting-down) from a single waist-worn tri-axial accelerometer signals through 4-fold cross-validation and testing on a total of thirteen subjects, achieving an average recognition accuracy of 96.43% and 98.21% in the first experiment and 95.51% and 98.72% in the second, respectively. The results demonstrate that both HMM and GMM are not only able to learn but also capable of generalization while the former outperformed the latter in the recognition of daily activities from a single waist worn tri-axial accelerometer. In addition, these two generative models enable the assessment of human activities based on acceleration signals with varying lengths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical inspection techniques have been widely used in industry as they are non-destructive. Since defect patterns are rooted from the manufacturing processes in semiconductor industry, efficient and effective defect detection and pattern recognition algorithms are in great demand to find out closely related causes. Modifying the manufacturing processes can eliminate defects, and thus to improve the yield. Defect patterns such as rings, semicircles, scratches, and clusters are the most common defects in the semiconductor industry. Conventional methods cannot identify two scale-variant or shift-variant or rotation-variant defect patterns, which in fact belong to the same failure causes. To address these problems, a new approach is proposed in this paper to detect these defect patterns in noisy images. First, a novel scheme is developed to simulate datasets of these 4 patterns for classifiers' training and testing. Second, for real optical images, a series of image processing operations have been applied in the detection stage of our method. In the identification stage, defects are resized and then identified by the trained support vector machine. Adaptive resonance theory network 1 is also implemented for comparisons. Classification results of both simulated data and real noisy raw data show the effectiveness of our method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic face recognition (AFR) is an area with immense practical potential which includes a wide range of commercial and law enforcement applications, and it continues to be one of the most active research areas of computer vision. Even after over three decades of intense research, the state-of-the-art in AFR continues to improve, benefiting from advances in a range of different fields including image processing, pattern recognition, computer graphics and physiology. However, systems based on visible spectrum images continue to face challenges in the presence of illumination, pose and expression changes, as well as facial disguises, all of which can significantly decrease their accuracy. Amongst various approaches which have been proposed in an attempt to overcome these limitations, the use of infrared (IR) imaging has emerged as a particularly promising research direction. This paper presents a comprehensive and timely review of the literature on this subject.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Levenberg Marquardt (LM) algorithm is one of the most effective algorithms in speeding up the convergence rate of the Artificial Neural Networks (ANN) with Multilayer Perceptron (MLP) architectures. However, the LM algorithm suffers the problem of local minimum entrapment. Therefore, we introduce several improvements to the Levenberg Marquardt algorithm by training the ANNs with meta-heuristic nature inspired algorithm. This paper proposes a hybrid technique Accelerated Particle Swarm Optimization using Levenberg Marquardt (APSO_LM) to achieve faster convergence rate and to avoid local minima problem. These techniques are chosen since they provide faster training for solving pattern recognition problems using the numerical optimization technique.The performances of the proposed algorithm is evaluated using some bench mark of classification’s datasets. The results are compared with Artificial Bee Colony (ABC) Algorithm using Back Propagation Neural Network (BPNN) algorithm and other hybrid variants. Based on the experimental result, the proposed algorithms APSO_LM successfully demonstrated better performance as compared to other existing algorithms in terms of convergence speed and Mean Squared Error (MSE) by introducing the error and accuracy in network convergence.