30 resultados para visible Raman spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a simple, rapid, and robust method to synthesize surface-enhanced Raman-scattered gold nanoparticles (GNPs) based on green chemistry. Vitis vinifera L. extract was used to synthesize noncytotoxic Raman-active GNPs. These GNPs were characterized by ultraviolet-visible spectroscopy, dynamic light-scattering, Fourier-transform infrared (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characteristic surface plasmon-resonance band at ~528 nm is indicative of spherical particles, and this was confirmed by TEM. The N–H and C–O stretches in FTIR spectroscopy indicated the presence of protein molecules. The predominant XRD plane at (111) and (200) indicated the crystalline nature and purity of GNPs. GNPs were stable in the buffers used for biological studies, and exhibited no cytotoxicity in noncancerous MIO-M1 (Müller glial) and MDA-MB-453 (breast cancer) cell lines. The GNPs exhibited Raman spectral peaks at 570, 788, and 1,102 cm-1. These new GNPs have potential applications in cancer diagnosis, therapy, and ultrasensitive biomarker detection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Above 110 °C the symmetric di-methyl-pyrrolidinium iodide salt forms a plastic crystal phase of interest in the area of new electrolyte materials. In this study ab initio calculations of this material has been conducted in order to assign the vibrational spectra. Raman spectroscopy measurements on the solid salt as well as on the salt dissolved in different solvents has been performed and these have been compared to the theoretical spectra. Furthermore, Raman spectra as a function of temperature have been recorded to investigate possible changes in inter-ionic interaction and/or structure through the phase transition. 1H NMR linewidth measurements as a function of temperature showed a large decrease in linewidth above 100 °C, attributed here to an increase in mobility in agreement with a previously reported phase transition at ~110 °C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report spectroscopic results from investigations of a novel solid polymeric fast-ion-conductor based on poly(acrylonitrile), (PAN, of repeat unit [CH2CH(CN)]n), and the salt LiCF3SO3 . From NMR studies of the temperature and concentration dependencies of 7Li- and lH-NMR linewidths, we conclude that significant ionic motion occurs at temperatures close to the glass transition temperature of these polymer-in-salt electrolytes, in accordance with a recent report on the ionic conductivity. In the dilute salt-in-polymer regime, however, ionic motion appears mainly to be confined to local salt-rich domains, as determined from the dramatic composition dependence of the ionic conductivity. FT-Raman spectroscopy is used to directly probe the local chemical anionic environment, as well as the Li+–PAN interaction. The characteristic δs(CF3) mode of the CF3SO3 anion at ~750–780 cm−l shows that the ionic substructure is highly complex. Notably, no spectroscopic evidence of free anions is found even at relatively salt-depleted compositions (e.g. N:Li~60–10:1). A strong Li+–PAN interaction is manifested as a pronounced shift of the characteristic polymer C=N stretching mode, found at ~2244 cm−l in pure PAN, to ~2275 cm−l for Li+-coordinated C=N moieties. Our proton-NMR data suggest that upon complexation of PAN with LiCF3 SO3, the glass transition occurs at progressively lower temperatures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have introduced an in-situ Raman monitoring technique to investigate the crystallization process inside protein drops. In addition to a conventional vapour-diffusion process, a novel procedure which actively stimulates the evaporation from a protein drop during crystallization was also evaluated, with lysozyme as a model protein. In contrast to the conventional vapour-diffusion condition, the evaporation-stimulated growth of crystals was initiated in a simple dehydration scheme and completed within a significantly shorter time. To gain an understanding of crystallization behaviours under the conditions with and without such evaporation stimulation, confocal Raman spectroscopy combined with linear regression analysis was used to monitor both lysozyme and HEPES buffer concentrations in real time. The confocal measurements having a high spatial resolution and good linear response revealed areas of local inhomogeneity in protein concentration when the crystallization started. The acquired concentration profiles indicated that (1)ÿthe evaporation-stimulated crystallization proceeded with protein concentrations lower than those under conventional vapour diffusion, and (2)ÿcrystals under the evaporation-stimulated condition were noticeable within an early stage of crystallization before the protein concentration approached its maximum value. The HEPES concentration profiles, on the other hand, increased steadily towards the end of the process regardless of the conditions used for crystallization. In particular, the observed local inhomogeneities specific to protein distribution suggested an accumulation mechanism of protein molecules that initiates the nucleation of crystals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The high-pressure behaviors of MOO3·1/2H2O and MOO3·2H2O have been investigated by Raman spectroscopy in a diamond anvil cell up to 31.3 and 30.3 GPa, respectively. In the pressure range up to around 30 GPa, both MOO3·1/2H2O and MOO3·2H2O undergo two reversible structural phase transitions. We observed a subtle structural transition due to O−H···O hydrogen bond in MOO3·1/2H2O at 3.3 GPa. We found a soft mode phase transition in MOO3·2H2O at 6.6 GPa. At higher pressures, a frequency discontinuity shift and appearance of new peaks occurred in both MOO3·1/2H2O and MOO3·2H2O, indicating that the second phase transition is a first-order transition. The frequency redshift of the O−H stretching bands of MOO3·1/2H2O and MOO3·2H2O are believed to be related to the enhancement of the O−H···O weak hydrogen bonds under high pressures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The high-pressure behavior of scandium oxide (Sc2O3) has been investigated by angle-dispersive synchrotron powder X-ray diffraction and Raman spectroscopy techniques in a diamond anvil cell up to 46.2 and 42 GPa, respectively. An irreversible structural transformation of Sc2O3 from the cubic phase to a monoclinic high-pressure phase was observed at 36 GPa. Subsequent ab initio calculations for Sc2O3 predicted the phase transition from the cubic to monoclinic phase but at a much lower pressure. The same calculations predicted a second phase transition at 77 GPa from the monoclinic to hexagonal phase.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spectroscopic techniques are widely used in forensic laboratories for quantitative and qualitative analysis. This artictle provides an overview of the spectroscopic techniques most commonly encountered in forensic laboratories. Infrared spectroscopy, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy energy dispersive X-ray spectroscopy, and nuclear magnetic resonance spectroscopy are used mainly for identification or characterization of substances. Visible and ultraviolet spectroscopy, atomic absorption spectroscopy and atomic emission spectroscopy are used mainly for measurement of substances or elements. Some techniques can be used for both identification and measurement. Related techniques such as molecular fluorescence, chemiluminescence and synchrotron techniques are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show how in-line Raman spectroscopy can be used to monitor both reactant and product concentrations for a heterogeneously catalysed Suzuki cross reaction operating in continuous flow. The flow system consisted of an HPLC pump to drive a homogeneous mixture of the reactants (4-bromobenzonitrile, phenylboronic acid, and potassium carbonate) through an oven heated (80°C) palladium catalyst immobilised on a silica monolith. A custom built PTFE in-line flow cell with a quartz window enabled the coupling of an Ocean Optics Raman spectrometer probe to monitor both the reactants and product (4-cyanobiphenyl). Calibration was based on obtaining multivariate spectral data in the range 1530 cm–1 and 1640 cm–1 and using partial least-squares regression (PLSR) to obtain a calibration model which was validated using gas chromatography–mass spectrometry (GCMS) analysis. In-line Raman monitoring of the reactant and product concentrations enable (i) determination of reaction kinetic information such as the empirical rate law and associated rate constant and (ii) optimisation of either the product conversion (61 % at 0.02 mL min–1 generating 17 g h–1) or product yield (14 % at 0.24 mL min–1 generating 53 g h–1).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The homogeneous and stable dispersion of carbon nanotubes (CNTs) in solvents is often a prerequisite for their use in advanced materials. Dispersion procedures, reagent concentration as well as the interactions among reagent, defective CNTs and near-perfect CNTs will affect the resulting CNT dispersion properties. This study, for the first time, presents a detailed comparison between two different approaches for dispersing CNTs. The results enhance our understanding of the interactions between surfactant, defective CNTs and near-perfect CNTs and thus provide insight into the mechanism of CNT dispersion. Dispersions of "as-produced" short multi-walled carbon nanotubes (MWCNTs) in N,N-dimethylformamide were prepared by two different surfactant (Triton X-100) assisted methods: ultrasonication and ultrasonication followed by centrifugation, decanting the supernatant and redispersing the precipitate. Visual observation and UV-visible spectroscopy results showed that the latter method produce a more stable dispersion with higher MWCNT content compared to dispersions produced by ultrasonication alone. Transmission electron microscopy and Raman spectroscopic investigations revealed that the centrifugation/ decanting step removed highly defective nanotubes, amorphous carbon and excess surfactant from the readily re-dispersible near-perfect CNT precipitate. This is contrary to other published findings where the dispersed MWCNTs were found in the supernatant. Thermogravimetric analysis showed that 95 % of Triton X-100 was removed by centrifugation/decanting step, and the remainder of the Triton X-100 molecules is likely randomly adsorbed onto the MWCNT surface. Infrared spectral analysis suggests that the methylene groups of the polyoxyethylene (aliphatic ether) chains of the residual Triton X-100 molecules are interacting with the MWCNTs. © 2014 Springer Science+Business Media.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phonon properties of boron nitride nanotubes (BNNTs) were investigated using Raman spectroscopy at different temperatures and new sp3- bonded BN vibrations were identified. The Raman peak of the E2g mode of BNNTs is found to be downshifted and broadened compared to that of hexagonal BN at the same temperature. By increasing the temperature, the energy of the E2g mode and the sp3-bonding mode are downshifted, with the temperature coefficients being -0.010 and -0.069cm-1/K, respectively. We attribute this downshifting to anharmonic effects as well as the elongation of the B-N bond in BNNT structures with increasing temperature. © 2014 The Japan Society of Applied Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vibrational spectroscopy of TCNQF4, TCNQF41- and TCNQF42- has been investigated by means of density functional theory. Band assignments in infrared and Raman spectra have been clarified and a series of diagnostics developed for redox level characterisation of TCNQF4 compounds. In the C£C stretching region (1460-1600 cm-1), TCNQF40 and TCNQF 41- show two bands, with the more energetic being at 1600 cm-1 in TCNQF40 and at approximately 1535 cm-1 in TCNQF41-; in TCNQF42- both modes absorb below 1500 cm-1, often merging to give a single band. In the C-F and endocyclic C-C stretching region (1290 and 1360 cm-1), TCNQF40 and TCNQF41- show strong bands, whereas TCNQF42- absorbs weakly or not at all. (Additional bands, e.g. from co-crystallised solvent molecules, may complicate this region.) In the nitrile stretching region (2000-2250 cm-1), modes are highly sensitive to nitrile coordination by metal cations. All three redox levels can produce bands above 2200 cm -1, however bands below 2150 cm-1 are usually due to TCNQF42-. This sensitivity to coordination is likely to affect the spectra of many organic molecular ions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Raman spectroscopy is among the primary techniques for the characterisation of graphene materials, as it provides insights into the quality of measured graphenes including their structure and conductivity as well as the presence of dopants. However, our ability to draw conclusions based on such spectra is limited by a lack of understanding regarding the origins of the peaks. Consequently, traditional characterisation techniques, which estimate the quality of the graphene material using the intensity ratio between the D and the G peaks, are unreliable for both GO and rGO. Herein we reanalyse the Raman spectra of graphenes and show that traditional methods rely upon an apparent G peak which is in fact a superposition of the G and D' peaks. We use this understanding to develop a new Raman characterisation method for graphenes that considers the D' peak by using its overtone the 2D'. We demonstrate the superiority and consistency of this method for calculating the oxygen content of graphenes, and use the relationship between the D' peak and graphene quality to define three regimes. This has important implications for purification techniques because, once GO is reduced beyond a critical threshold, further reduction offers limited gain in conductivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have many properties desirable for surface-enhanced Raman spectroscopy (SERS). BN nanosheets have a strong surface adsorption capability toward airborne hydrocarbon and aromatic molecules. For maximized adsorption area and hence SERS sensitivity, atomically thin BN nanosheet-covered gold nanoparticles have been prepared for the first time. When placed on top of metal nanoparticles, atomically thin BN nanosheets closely follow their contours so that the plasmonic hot spots are retained. Electrically insulating BN nanosheets also act as a barrier layer to eliminate metal-induced disturbances in SERS. Moreover, the SERS substrates veiled by BN nanosheets show an outstanding reusability in the long term. As a result, the sensitivity, reproducibility, and reusability of SERS substrates can be greatly improved. We also demonstrate that large BN nanosheets produced by chemical vapor deposition can be used to scale up the proposed SERS substrate for practical applications.