46 resultados para ventromedial hypothalamic nucleus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress compromises reproductive function and the major physiological system activated during stress is the hypothalamo-pituitary-adrenal axis. Corticotrophin-releasing hormone and arginine vasopressin (AVP), which are produced in neurones of the paraventricular nucleus (PVN), drive the hypothalamo-pituitary-adrenal axis and are also implicated in the suppression of the reproductive axis. We used retrograde tracing and Fos labelling to map the projections from the PVN to the preoptic area (POA) where most gonadotrophin releasing hormone (GnRH) neurones are found. Fluorogold (FG) injections were made into the POA of gonadectomised male and female sheep (n = 5/sex), the animals were stressed and the brains recovered for histochemistry. All animals responded to stress with an increase in the number of Fos-labelled nuclei in the PVN. Few retrogradely labelled cells of the PVN were activated by stress. Dual labelling showed that very few FG-labelled cells also stained for corticotrophin-releasing hormone, none for AVP or enkephalin. Dual labelling for FG and Fos in the bed nucleus of the stria terminalis (BNST) and the arcuate nucleus showed that no FG-labelled cells in the BNST and only few in the ARC were activated by stress. No sex differences were observed in the activation of FG-labelled cells in any of the nuclei examined. We conclude that, although cells of the PVN, BNST and/or arcuate nucleus may affect reproduction via the GnRH cells of the POA, this is unlikely to involve direct input to the POA. If cells of these regions are involved in GnRH suppression during stress, this may occur via interneuronal pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Songbirds sing complex songs as a result of evolution through sexual selection. The evolution of such sexually selected traits requires genetic control, as well as selection on their expression. Song is controlled by a discrete neural pathway in the brain, and song complexity has been shown to correlate with the volume of specific song control nuclei. As such, the development of these nuclei, in particular the high vocal centre (HVC), is thought to be the mechanism controlling signal expression indicating male quality. We tested the hypothesis that early developmental stress selectively affects adult HVC size, compared with other brain nuclei. We did this by raising cross–fostered zebra finches (Taeniopygia guttata) under stressed and controlled conditions and determining the effect on adult HVC size. Our results confirm the strong influence of environmental conditions, particularly on HVC development, and therefore on the expression of complex songs. The results also show that both environmental and genetic factors affect the development of several brain nuclei, highlighting the developmental plasticity of the songbird brain. In all, these results explain how the complex song repertoires of songbirds can evolve as honest indicators of male quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paraventricular nucleus (PVN) is integral to regulation of the hypothalamo-pituitary-adrenal (HPA) axis and contains cells producing corticotrophin-releasing hormone (CRH), arginine vasopressin (AVP) and enkephalin. We used immunohistochemistry to map these peptides and to resolve the extent of co-localization within PVN cells in intact and gonadectomized male and female sheep. Immunoreactive (ir) CRH, AVP and enkephalin cells were mapped in two rams and two ewes at 180 μm intervals throughout the rostro-caudal extent of the PVN. Similar distributions of AVP-ir cells occurred in both sexes whereas CRH-ir and enkephalin-ir cells extended more rostrally in rams. In groups (n=4) of intact and gonadectomized sheep of both sexes, co-localization and distribution of neuropeptides was influenced by sex and gonadectomy. Males had more AVP and CRH cells than females. Intact animals had more AVP cells than gonadectomized animals. There were no differences between groups in the number or percentage of cells that stained for both CRH and AVP or in the number of cells that stained for both CRH and enkephalin. Differences were observed in the percentage of enkephalin cells that contained CRH with males having a greater percentage of co-localized cells than did females. Differences were also observed in the number and percentage of cells that stained for both enkephalin and AVP; the number of cells that stained for both neuropeptides was greater in males than in females and greater in intact animals than in gonadectomized animals. Differences were observed in the percentage of AVP cells that contained enkephalin, and in the percentage of enkephalin cells that contained AVP with males having a greater percentage of co-localized cells than did females. We conclude that sex and gonadal status affect peptide distribution in the PVN of the sheep which may provide an anatomical basis for sex differences in HPA axis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) are members of a family of hormones that play an important role in mammalian fluid and electrolyte balance. In the periphery, natriuretic peptides reduce blood volume and subsequently blood pressure by increasing renal natriuresis and diuresis and relaxation of vascular smooth muscle. The actions of natriuretic peptides are mediated via two membrane-linked guanylate cyclase receptors (NPR-GC); natriuretic peptide receptor-A (NPR-A) which has a high affinity for ANP and BNP; and natriuretic peptide receptor-B (NPR-B)which has the greatest affinity for CNP. A third receptor not linked to guanylate cyclase, natriuretic peptide receptor-C (NPR-C) also exists, which binds to ANP, BNP and CNP with a relatively equal affinity, and is involved with clearance of the peptides from the circulation and tissues. The natriuretic peptides are present in the brain and are particularly predominant in cardiovascular and fluid and electrolyte regulating areas such as the anteroventral third ventricle (AV3V) region. This distribution has led to the suggestion natriuretic peptides play a neuromodulatory role in the central control of fluid homeostasis. Natriuretic peptides in the brain have been observed to inhibit the release of other fluid and electrolyte regulating hormones such as arginine vasopressin (AVP) and angiotensin II (AII). Natriuretic peptides have also been identified in the non-mammalian vertebrates although information regarding the distribution of the peptides and their receptors in the non-mammalian brain is limited. In amphibians, immunohistochemical studies have shown that natriuretic peptides are highly concentrated in the preoptic region of the brain, an area believed to be analogous to the A\T3\ region in mammals, which suggests that natriuretic peptides may also be involved in central fluid and electrolyte regulation in amphibians. To date, CNP is the only natriuretic peptide that has been isolated and cloned from the lower vertebrate brain, although studies on the distribution of CNP binding sites in the brain have only been performed in one fish species. Studies on the distribution of ANP binding sites in the lower vertebrate brain are similarly limited and have only been performed in one fish and two amphibian species. Moreover, the nature and distribution of the natriuretic peptide receptors has not been characterised. The current study therefore, used several approaches to investigate the distribution of natriuretic peptides and their receptors in the brain of the amphibian Bufo marinus. The topographical relationship of natriuretic peptides and the fluid and electrolyte regulating hormone arginine vasotocin was also investigated, in order to gain a greater understanding of the role of the natriuretic peptide system in the lower vertebrate brain. Immunohistochemical studies showed natriuretic peptides were distributed throughout the brain and were highly concentrated in the preoptic region and interpeduncular nucleus. No natriuretic peptide-like immunoreactivity (NP-IR) was observed in the pituitary gland. Arginine vasotocin-like immunoreactivity (AvT-IR) was confined to distinct regions, particularly in the preoptic/hypothalamic region and pituitary gland. Double labelling studies of NP-JR and AvT-IR showed the peptides are not colocalised in the same neural pathways. The distribution of natriuretic peptide binding sites using the ligands 125I-rat ANP (125I-rANP) and 125I-porcine CNP (125I-pCNP) showed different distributions in the brain of B. marinus. The specificity of binding was determined by displacement with unlabelled rat ANP, porcine CNP and C-ANF, an NPR-C specific ligand. 125I-rANP binding sites were broadly distributed throughout the brain with the highest concentration in pituitary gland, habenular, medial pallium and olfactory region. Minimal 125I-rANP binding was observed in the preoptic region. Residual 125I-rANP binding in the presence of C-ANF was observed in the olfactory region, habenular and pituitary gland indicating the presence of both NPR-GC and NPR-C in these regions. 125I-pCNP binding was limited to the olfactory region, pallium and posterior pituitary gland. All 125I-pCNP binding was displaced by C-ANF which suggests that CNP in the brain of B. marinus binds only to NPR-C. Affinity cross-linking and SDS-PAGB demonstrated two binding sites at 136 kDa and 65 kDa under reducing conditions. Guanylate cyclase assays showed 0.1 µM ANP increased cGMP levels 50% above basal whilst a 10-fold higher concentration of CNP was required to produce the same result. Molecular cloning studies revealed a 669 base pair fragment showing 91% homology with human and rat NPR-A and 89% homology with human, rat and eel NPR-B. A 432 base pair fragment showing 67% homology to the mammalian NPR-C and 58% homology with eel NPR-D was also obtained. The results show natriuretic peptides and their receptors are distributed throughout the brain of B. marinus which indicates that natriuretic peptides may participate in a range of regulatory functions throughout the brain. The potential for natriuretic peptides to regulate the release of the fluid and electrolyte regulating hormone AVT also exists due to the high number of natriuretic peptide binding sites in the posterior pituitary gland. At least two populations of natriuretic peptide receptors are present in the brain of B. marinus, one linked to guanylate cyclase and one resembling the mammalian clearance receptor. Furthermore, autoradiography and guanylate cyclase studies suggest ANP may be the major ligand in the brain of B. marinus, even though CNP is the only natriuretic peptide that has been isolated from the lower vertebrate brain to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focuses on the discovery, characterisation and validation of a gene in the brain, named FIT, that regulates body weight. When suppressed in rats, food intake is inhibited and body weight is reduced. FIT regulates both appetite and metabolic rate, and is therefore a new and exciting target for obesity therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medullary catecholamine and hypothalamic neurosecretory oxytocin cells are activated by hypotension, but previous studies have provided uncertain outcomes concerning their ability to respond to a purely hypovolaemic stimulus. In the present study, injections of PEG/water and pentolinium were used to elicit non-hypotensive, isosmotic hypovolaemia and isovolaemic, isosmotic hypotension, respectively, in conscious rats. Animals were sacrificed 2 h after treatment. Immunolabelling for Fos, tyrosine hydroxylase and oxytocin established that these two stimuli activate almost identical populations of catecholamine neurons in the ventrolateral and dorsomedial medulla, and very similar populations of oxytocin cells in the supraoptic and paraventricular nuclei of the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical stressors such as infection, inflammation and tissue injury elicit activation of the hypofhalamic-pituitary-adrenal (HPA) axis. This response has significant implications for both immune and central nervous system function. Investigations in rats into the neural substrates responsible for HPA axis activation to an immune challenge have predominantly utilized an experimental paradigm involving the acute administration of the pro-inflammatory cytokine interleukin-1 β (IL-1β). It is well recognized that medial parvocellular corticotrophin-releasing factor cells of the paraventricular nucleus (mPVN CRF) are critical in generating HPA axis responses to an immune challenge but little is known about how peripheral immune signals can activate and/or modulate the mPVN CRF cells. Studies that have examined the afferent control of the mPVN CRF cell response to systemic IL-1β have centred largely on the inputs from brainstem catecholamine cells. However, other regulatory neuronal populations also merit attention and one such region is a component of the limbic system, the central nucleus of the amygdala (CeA). A large number of CeA cells are recruited following systemic IL-lβ administration and there is a significant body of work indicating that the CeA can influence HPA axis function. However, the contribution of the CeA to HPA axis responses to an immune challenge is only just beginning to be addressed. This review examines three aspects of HPA axis control by systemic IL-lβ; (i) whether the CeA has a role in generating HPA axis responses to systemic IL-1 β, (ii) the identity of the neural connections between the CeA and mPVN CRF cells that might be important to HPA axis responses and (iii) the mechanisms by which systemic IL-lβ triggers the recruitment of CeA cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1β (1 μg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1β. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1β administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1β-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1β administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic–pituitary–adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic–pituitary–adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1β. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic–pituitary–adrenal axis responses to systemic interleukin-1β, we next mapped the effects of similar lesions on interleukin-1β-induced Fos expression in regions previously shown to regulate the hypothalamic–pituitary–adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1β, an outcome that is difficult to reconcile with a simple medial prefrontal cortex–bed nucleus of the stria terminalis–corticotropin-releasing factor cell control circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Psychological stressors trigger the activation of medullary noradrenergic cells, an effect that has been shown to depend upon yet-to-be-identified structures located higher in the brain. To test whether the amygdala is important in this regard, we examined the effects of amygdala lesions on noradrenergic cell responses to restraint, and also looked at whether any amygdala cells that respond to restraint project directly to the medulla. Ibotenic acid lesions of the medial amygdala completely abolished restraint-induced Fos expression in A1 and A2 noradrenergic cells. In contrast, lesions of the central amygdala actually facilitated noradrenergic cell responses to restraint. Tracer deposits in the dorsomedial (but not ventrolateral) medulla retrogradely labelled many cells in the central nucleus of the amygdala, but none of these cells expressed Fos in response to restraint. These data suggest for the first time that the medial amygdala is critical to the activation of medullary noradrenergic cells by a psychological stressor whereas the central nucleus exerts an opposing, inhibitory influence upon noradrenergic cell recruitment. The initiation of noradrenergic cell responses by the medial amygdala does not involve a direct projection to the medulla. Accordingly, a relay through some other structure, such as the hypothalamic paraventricular nucleus, warrants careful consideration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide variety of stressors elicit Fos expression in the medial prefrontal cortex (mPFC). No direct attempts, however, have been made to determine the role of the inputs that drive this response. We examined the effects of lesions of mPFC catecholamine terminals on local expression of Fos after exposure to air puff, a stimulus that in the rat acts as an acute psychological stressor. We also examined the effects of these lesions on Fos expression in a variety of subcortical neuronal populations implicated in the control of adrenocortical activation, one classic hallmark of the stress response. Lesions of the mPFC that were restricted to dopaminergic terminals significantly reduced numbers of Fos-immunoreactive (Fos-IR) cells seen in the mPFC after air puff, but had no significant effect on stress-induced Fos expression in the subcortical structures examined. Lesions of the mPFC that affected both dopaminergic and noradrenergic terminals also reduced numbers of Fos-IR cells observed in the mPFC after air puff. Additionally, these lesions resulted in a significant reduction in stress-induced Fos-IR in the ventral bed nucleus of the stria terminalis. These results demonstrate a role for catecholaminergic inputs to the mPFC, in the generation of both local and subcortical responses to psychological stress.