17 resultados para variance-ratio tests


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new portfolio risk measure that is the uncertainty of portfolio fuzzy return is introduced in this paper. Beyond the well-known Sharpe ratio (i.e., the reward-to-variability ratio) in modern portfolio theory, we initiate the so-called fuzzy Sharpe ratio in the fuzzy modeling context. In addition to the introduction of the new risk measure, we also put forward the reward-to-uncertainty ratio to assess the portfolio performance in fuzzy modeling. Corresponding to two approaches based on TM and TW fuzzy arithmetic, two portfolio optimization models are formulated in which the uncertainty of portfolio fuzzy returns is minimized, while the fuzzy Sharpe ratio is maximized. These models are solved by the fuzzy approach or by the genetic algorithm (GA). Solutions of the two proposed models are shown to be dominant in terms of portfolio return uncertainty compared with those of the conventional mean-variance optimization (MVO) model used prevalently in the financial literature. In terms of portfolio performance evaluated by the fuzzy Sharpe ratio and the reward-to-uncertainty ratio, the model using TW fuzzy arithmetic results in higher performance portfolios than those obtained by both the MVO and the fuzzy model, which employs TM fuzzy arithmetic. We also find that using the fuzzy approach for solving multiobjective problems appears to achieve more optimal solutions than using GA, although GA can offer a series of well-diversified portfolio solutions diagrammed in a Pareto frontier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a set of nonparametric rank tests for non-stationary panels based on multivariate variance ratios which use untruncated kernels. As such, the tests do not require the choice of tuning parameters associated with bandwidth or lag length and also do not require choices with respect to numbers of common factors. The tests allow for unrestricted cross-sectional dependence and dynamic heterogeneity among the units of the panel, provided simply that a joint functional central limit theorem holds for the panel of differenced series. We provide a discussion of the relationships between our setting and the settings for which first- and second generation panel unit root tests are designed. In Monte Carlo simulations we illustrate the small-sample performance of our tests when they are used as panel unit root tests under the more restrictive DGPs for which panel unit root tests are typically designed, and for more general DGPs we also compare the small-sample performance of our nonparametric tests to parametric rank tests. Finally, we provide an empirical illustration by testing for income convergence among countries.