158 resultados para ultrafine grain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the effect of nominal equivalent strain (between 0 and 1.2), deformation temperature (790– 750°C) and carbon content (0.06 – 0.35%C) was investigated on ferrite grain refinement through dynamic strain induced transformation (DSIT) in plain carbon steels in single pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain, which could be classified into three regions; no DSIT region, DSIT region, and ultrafine ferrite (UFF) grain region. Hence, two critical strains; dynamic strain induced transformation (εC, DSIT) and ultrafine ferrite formation (εC, UFF) were determined. These strains were increased significantly with an increase in carbon content. The critical strain for UFF formation reduced with decrease in deformation temperature. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μm) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite– pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with increase in the nominal equivalent strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot torsion testing of a C–Mn–V steel was used to study the evolution of  ultrafine ferrite (UFF) formation by dynamic strain-induced transformation (DSIT) in conjunction with air-cooling for two prior austenite grain sizes. This study evaluated not only the evolution of DSIT ferrite during straining, but also the grain growth behaviour of DSIT ferrite grains during post-deformation cooling. For both austenite grain sizes, the DSIT ferrite initially nucleated on/or near prior austenite grain boundaries at an early stage of transformation followed by the grain interiors. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary (GB) and the intragranular ferrite (IG) grains during post-deformation cooling. For the fine prior austenite grain size, the distribution of DSIT ferrite grains was more homogenous compared with the coarse austenite and the coarsening occurred not only in the GB ferrite grains but also in the IG ferrite grains. However, the ferrite coarsening mostly occurred for the IG ferrite rather than the GB ferrite grains in the coarse austenite. The result suggests that normal grain growth occurred during the overall transformation in the GB ferrite grains for the coarse initial austenite grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, wedge-shaped samples were used to determine the effect of nominal equivalent strain (between 0 and 1.2) and carbon content (0.06--0.35%C) on ferrite grain refinement through dynamic strain-induced transformation (DSIT) in plain carbon steels using single-pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain which could be classified into three regions; no DSIT region, DSIT region and the ultrafine ferrite (UFF) grain region. Also, the extent of these regions was strongly influenced by the carbon content. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μ$m) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite-pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with an increase in the nominal equivalent strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A C–Mn–V steel was used to study ultrafine ferrite formation (1–3 μm) through dynamic strain-induced transformation (DSIT) using hot torsion experiments. A systematic study determined the critical strain for the start of DSIT (C,DSIT), although this may not lead to a fully ultrafine microstructure. Therefore, the strain to produce an ultrafine ferrite (UFF) as final microstructure (C,UFF) during deformation was also determined. In addition, the effect of thermomechanical parameters such as deformation temperature, prior austenite grain size, strain rate and cooling rate on C,DSIT and C,UFF has been evaluated. DSIT ferrite nucleated on prior austenite grain boundaries at an early stage of straining followed by intragranular nucleation at higher strains. The prior austenite grain size affected the distribution of DSIT ferrite nucleation sites at an early stage of transformation and the subsequent coarsening behaviour of the grain boundary and intragranular ferrite grains during post-deformation cooling. Also, C,DSIT and C,UFF increased with an increase in the prior austenite grain size and deformation temperature. The post-deformation cooling had a strong effect not only on C,UFF but also the UFF microstructure (i.e. final ferrite grain size and second phase characteristics).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is now considerable interest in the development of ultrafine grained steels with an average grain size of the order of 1µm. One of the methods with currently the greatest industrial interest is by dynamic strain induced transformation from austenite to ferrite. This involves deformation below the
equilibrium transformation temperature so that transformation occurs during the deformation. However, large strains are required to completely transform the microstructure during deformation. It is potentially possible to activate transformation during deformation then continue transformation
during subsequent cooling. It is shown that there are two critical strains: the first is where dynamic transformation commences and the second is the minimum strain for a fully ultrafine final microstructure after cooling to room temperature. The deformation and potential role of dynamic
recrystallization of the dynamically formed ferrite is also considered. Overall it is clear that for full industrial exploitation there is a need to understand and exploit the competing issues of nucleation, growth and recrystallization of the ferrite by both dynamic and static processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of ultrafine grained steels is an area of intense research around the World. There are a number of methods to produce grain sizes of approximately 1 µm, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. This paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. It is shown that this requires deformation within the Ae3 to Ar3 temperature range for a given alloy. The formation of ultrafine ferrite involves a dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation arises from the introduction of additional intragranular nucleation sites. It is possible that the deformation also hinders the growth or coarsening of the ferrite and may also lead to dynamic recrystallization of the ferrite. The most likely commercial exploitation of ultrafine ferrite would appear to rely on the formation of a critical volume fraction of dynamic strain induced ferrite followed by controlled cooling to ensure this is maintained to room temperature and to also form other secondary phases, such as martensite, bainite and/or retained austenite to improve the formability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of ultrafine grained microstructures in steels has received considerable attention in recent times. In many cases the aim is to produce high strength structural steels with minimal alloying. It is well established that for an equiaxed ferrite with a uniform dispersion of second phase, both the strength and toughness will be markedly improved if the grain size can be reduced to 1-2 μm, from the typical range of 5-10 μm. Means of achieving this through dynamic strain induced transformation are examined here, following a brief overview of some of the key issues encountered when attempting to refine the austenite in existing mill configurations. A number of deformation microstructure maps are developed to aid the discussion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of ultrafine ferrite by strain induced transformation is assessed using rolling and hot torsion experiments. These experiments are used to examine the impact of thermomechanical processing conditions and steel chemistry on strain induced austenite to ferrite transformation and the formation of ultrafine ferrite. The critical strain for dynamic strain induced transformation increased with increasing carbon equivalence, deformation temperature and austenite grain size. The deformation structure in the austenite grains changes with the thermomechanical processing conditions. Drawing on these results and the current literature, the important factors for the production of ultrafine ferrite are described and a mechanism is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine ferrite can be formed in steels through relatively simple thermomechanical processes. The ferrite nucleates intragranularly within the austenite grain on deformation features, which are favoured by heavy shear and large effective strains. It is also possible to produce ultrafine microstructures under multipass deformation conditions, although these may be due to dynamic recovery rather than strain induced transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A C-Mn-Nb-Ti steel was deformed by hot torsion to study ultrafine ferrite formation through dynamic strain-induced transformation (DSIT) in conjunction with air cooling. A systematic study was carried out first to evaluate the effect of deformation temperature and prior austenite grain size on the critical strain for ultrafine ferrite formation (ε C,UFF) through single-pass deformation. Then, multiple deformations in the nonrecrystallization region were used to study the effect of thermomechanical parameters (i.e., strain, deformation temperature, etc.) on ε C,UFF. The multiple deformations in the nonrecrystallization region significantly reduced ε C,UFF, although the total equivalent strain for a given thermomechanical condition was higher than that required in single-pass deformation. The current study on a Ni-30Fe austenitic model alloy revealed that laminar microband structures were the key intragranular defects in the austenite for nucleation of ferrite during the hot torsion test. The microbands were refined and overall misorientation angle distribution increased with a decrease in the deformation temperature for a given thermomechanical processing condition. For nonisothermal multipass deformation, there was some contribution to the formation of high-angle microband boundaries from strains at higher temperature, although the strains were not completely additive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The refinement of ferrite grain size is the most generally accepted approach to simultaneously improve the strength and toughness in steels. Historically, the level of ferrite refinement is limited to 5-10 μm using conventional industrial approaches. Nowadays, though, several thermomechanical processes have been developed to produce ferrite grain sizes of 1-3 μm or less, ranging from extreme thermal and deformation cycles to more typical thermomechanical processes. The present paper reviews the status of the production of ultrafine grained steels through relatively simple thermomechanical processing. This requires deformation within the Ae3 to Ar3 temperature range for a given alloy. Here, the formation of ultrafine ferrite (UFF) involves the dynamic transformation of a significant volume fraction of the austenite to ferrite. This dynamic strain induced transformation (DSIT) arises from the introduction of extensive intragranular nucleation sites that are not present in conventional controlled rolling. The DSIT route has the potential to be adjusted to suit current industrial infrastructure. However, there are a number of significant issues that have been raised, both as gaps in our understanding and as obstacles to industrial implementation. One of the critical issues is that it appears that very large strains are required. Combined with this concern is the issue of whether a combination of dynamic and static transformation can be used to achieve an adequate level of refinement. Another issue that has also become apparent is that grain sizes of 1 μm can lead to low levels of ductility and hence many workers are attempting to obtain 2-3 μm grains, or to introduce a second phase to provide the required ductility. There are also a number of areas of disagreement between authors including the role of dynamic recrystallisation of ferrite in the production of UFF by DSIT, the reasons for the low coarsening rate of UFF grains, the role of microalloying elements and the effects of austenite grain size and strain rate. The present review discusses these areas of controversy and highlights cases where experimental results do not agree.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses some experimental results on the influence of grain refinement on the final mechanical properties of IF and microalloyed steels designed for auto-body components. It shows also some modeling approaches to understanding the dynamic behavior of fine-rained materials. The Zerilli–Armstrong (Z–A) and Khan–Huang–Liang (KHL) models for studied steels were implemented into FEM code in order to simulate the dynamic compression tests with different strain rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a descriptive model to explain the mechanisms involved in the development of ultrafine grained structure in steels through dynamic strain induced transformation. The model considers the microstructural evolution during and after deformation as well as the role of different process variables. A key factor is the competition between nucleation and growth, where it is shown that many potential nuclei can be lost under certain conditions leading to a mixed or coarser grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the current study, the role of dynamic strain induced transformation on ferrite grain refinement was investigated using different thermomechanical processing routes. A Ni-30Fe austenitic model alloy was also employed to study the evolution of the deformation structure under different deformation conditions. It was shown that the extreme refinement of ferrite is more likely due to the formation of extensive high angle intragranular defects in the austenite through deformation. Among the different thermomechanical parameters, the deformation temperature had a significant effect on the intragranular defect characteristics. There was a transition where the cell dislocation structure changed to laminar microband structures with a decrease in the deformation temperature. Moreover, the ultrafine grained structure was also successfully produced through static transformation using warm deformation process; in other words, concurrent deformation and transformation are not necessary for ultrafine ferrite formation.