28 resultados para tip and casing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although coordinate metrology has reached a very high state of development concerning versatility and accuracy for common engineering parts, a high precision capability with nano scale resolution and accuracy is often hard to achieve when it is required to measure very small parts and features. The limiting component is the bulky probing system of traditional CMMs (coordinate measuring machines). In order to satisfy increasing demand for highly accurate geometrical measurements on small parts and small structures, a new measuring probe of high sensitivity and small geometrical dimension with low contact forces needs to be developed. In this paper, a novel probing system, which combines a FBG (Fibre Bragg Grating) embedded optical fibre tactile probe with an optical sensing technique, has been proposed. With the sensor elements integrated into the probe tip directly, the system sensitivity can be increased significantly. A preliminary theoretical analysis of the sensitivity of the FBG fibre sensor under axial and lateral end point loading has been presented and the results show that this micro scale probe has great potential to realize a resolution of 1nanometer on geometrical measurement of small parts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this chapter is to highlight potential links between leptin and the lipid metabolism in fish, within the context of current research interests of the fish nutrition amd aquaculture sector. In fact, it is envisaged that the whole aquacuture and fish biology sector will significantly benefit from an increased knowledge of such a powerful hormone, and it is believed this will contribute in transforming current aquaculture industry into an environmental and economical means of producing nourishing fish and seafood for the growing global population. The context is framed by a brief introduction on the current challenges in aquaculture and fish nutrition, and susequently the chapter focuses on the potential roles of leptin on voluntary food intake and lipid digestion and absorption in fish. Following this, the possible roles of leptin on lipid deposition and utilisation and the fatty acid metabolism in fish are presented and discussed. Eventually the possible interrelationships between dietary lipids and leptin are analysed underlining how knowledge gained from human nutrition could be extremely useful to tentatively address current constraints and obstacles found in the aquaculture nutrition sector. The present analysis suggests that we are likely only able to see the tip of the iceberg, and great and significant breakthrough discoveries will be likely by fathoming such fascinating area of research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This literature review describes the theoretical basis for developing a pedagogical model of higher education/industry engagement for the built environment and related design disciplines, with a focus on architecture. In particular, attention is given to the conceptualisation informing the development of such a model as a form of work integrated learning (WIL). In the discussion, the use and development of WIL in architecture will be placed in the historical context of Cooperative Education as a whole. The objective of the paper is to present ideas about the way in which design education relocated to practice might better prepare students for professional life.

Aiming to capitalize on the work place as a location for authentic learning, the paper will propose a form of WIL that will be termed “Teaching in Practice” (TiP). A prime aim of such a model is to bridge the growing gap between academia and the profession by enabling students to learn design from practitioners within a practice environment. The paper will argue that TiP allows practitioners to have a direct influence on design education, and thus establishes connections between academia and the professions that ensure built environment education remains relevant to industry needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrospinning technique has attracted a lot of interests recently, although it was invented in as early as 1934 by Anton (Anton, 1934). A basic electrospinning setup normally comprises a high voltage power supply, a syringe needle connected to power supply, and a counter-electrode collector as shown in Fig. 1. During electrospinning, a high electric voltage is applied to the polymer solution, which highly electrifies the solution droplet at the needle tip (Li & Xia, 2004). As a result, the solution droplet at the needle tip receives electric forces, drawing itself toward the opposite electrode, thus deforming into a conical shape (also known as “Taylor cone” (Taylor, 1969)). When the electric force overcomes the surface tension of the polymer solution, the polymer solution ejects off the tip of the “Taylor cone” to form a polymer jet. The charged jet is stretched by the strong electric force into a fine filament. Randomly deposited dry fibers can be obtained on the collector due to the evaporation of solvent in the filament. There are many factors affecting the electrospinning process and fiber properties, including polymer materials (e.g. polymer structure, molecular weight, solubility), solvent (e.g. boiling point, dielectric properties), solution properties (e.g. viscosity, concentration, conductivity, surface tension), operating conditions (e.g. applied voltage, collecting distance, flow rate), and ambient environment (e.g. temperature, gas environment, humidity).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object

The authors of previous studies have demonstrated that local adenosine efflux may contribute to the therapeutic mechanism of action of thalamic deep brain stimulation (DBS) for essential tremor. Real-time monitoring of the neurochemical output of DBS-targeted regions may thus advance functional neurosurgical procedures by identifying candidate neurotransmitters and neuromodulators involved in the physiological effects of DBS. This would in turn permit the development of a method of chemically guided placement of DBS electrodes in vivo. Designed in compliance with FDA-recognized standards for medical electrical device safety, the authors report on the utility of the Wireless Instantaneous Neurotransmitter Concentration System (WINCS) for real-time comonitoring of electrical stimulation–evoked adenosine and dopamine efflux in vivo, utilizing fast-scan cyclic voltammetry (FSCV) at a polyacrylonitrile-based (T-650) carbon fiber microelectrode (CFM).
Methods

The WINCS was used for FSCV, which consisted of a triangle wave scanned between −0.4 and +1.5 V at a rate of 400 V/second and applied at 10 Hz. All voltages applied to the CFM were with respect to an Ag/AgCl reference electrode. The CFM was constructed by aspirating a single T-650 carbon fiber (r = 2.5 μm) into a glass capillary and pulling to a microscopic tip using a pipette puller. The exposed carbon fiber (the sensing region) extended beyond the glass insulation by ~ 50 μm. Proof of principle tests included in vitro measurements of adenosine and dopamine, as well as in vivo measurements in urethane-anesthetized rats by monitoring adenosine and dopamine efflux in the dorsomedial caudate putamen evoked by high-frequency electrical stimulation of the ventral tegmental area and substantia nigra.
Results

The WINCS provided reliable, high-fidelity measurements of adenosine efflux. Peak oxidative currents appeared at +1.5 V and at +1.0 V for adenosine, separate from the peak oxidative current at +0.6 V for dopamine. The WINCS detected subsecond adenosine and dopamine efflux in the caudate putamen at an implanted CFM during high-frequency stimulation of the ventral tegmental area and substantia nigra. Both in vitro and in vivo testing demonstrated that WINCS can detect adenosine in the presence of other easily oxidizable neurochemicals such as dopamine comparable to the detection abilities of a conventional hardwired electrochemical system for FSCV.
Conclusions

Altogether, these results demonstrate that WINCS is well suited for wireless monitoring of high-frequency stimulation-evoked changes in brain extracellular concentrations of adenosine. Clinical applications of selective adenosine measurements may prove important to the future development of DBS technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion analysis of a parallel robot assisted minimally invasive surgery/microsurgery system (PRAMiSS) and the control structures enabling it to achieve milli/micromanipulations under the constraint of moving through a fixed penetration point or so-called remote centre-of-motion (RCM) are presented in this article. Two control algorithms are proposed suitable for minimally invasive surgery (MIS) with submillimeter accuracy and for minimally invasive micro-surgery (MIMS) with submicrometer accuracy. The RCM constraint is performed without having any mechanical constraint. Control algorithms also apply orientation constraint preventing the tip to orient relative to the soft tissues due to the robot movements. Experiments were conducted to verify accuracy and effectiveness of the proposed control algorithms for MIS and MIMS operations. The experimental results demonstrate accuracy and performance of the proposed position control algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electron backscatter diffraction (EBSD) study of the microstructure of TRIP steel during fatigue failure. Phase and crystal orientation study of a TRIP steel subjected to cyclic load induced fatigue. The relative fractions of austenite, ferrite and martensite are quantified within the strain field of a fatigue crack tip. This data is a subset of data supporting a wider study of the fatigue properties of multiphase steels used in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) and scanning electron microscopy (SEM-EBSD) used to examine the deformed microstructures .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS2) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS2 nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostatic interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS2 nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS2 nanosheets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In marine cartilaginous fish, reabsorption of filtered urea by the kidney is essential for retaining a large amount of urea in their body. However, the mechanism for urea reabsorption is poorly understood due to the complexity of the kidney. To address this problem, we focused on elephant fish (Callorhinchus milii) for which a genome database is available, and conducted molecular mapping of membrane transporters along the different segments of the nephron. Basically, the nephron architecture of elephant fish was similar to that described for elasmobranch nephrons, but some unique features were observed. The late distal tubule (LDT), which corresponded to the fourth loop of the nephron, ran straight near the renal corpuscle, while it was convoluted around the tip of the loop. The ascending and descending limbs of the straight portion were closely apposed to each other and were arranged in a countercurrent fashion. The convoluted portion of LDT was tightly packed and enveloped by the larger convolution of the second loop that originated from the same renal corpuscle. In situ hybridization analysis demonstrated that co-localization of Na(+),K(+),2Cl(-) cotransporter 2 and Na(+)/K(+)-ATPase α1 subunit was observed in the early distal tubule and the posterior part of LDT, indicating the existence of two separate diluting segments. The diluting segments most likely facilitate NaCl absorption and thereby water reabsorption to elevate urea concentration in the filtrate, and subsequently contribute to efficient urea reabsorption in the final segment of the nephron, the collecting tubule, where urea transporter-1 was intensely localized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elemental imaging using laser ablation inductively coupled plasma mass spectrometry was performed on whole leaves of the hyperaccumulating plant Noccaea caerulescens after treatments with either Ni, Zn or Cd. These detailed elemental images reveal differences in the spatial distribution of these three elements across the leaf and provide new insights in the metal ion homeostasis within hyperaccumulating plants. In the Zn treated plants, Zn accumulated in the leaf tip while Mn was co-localised with Zn suggesting similar storage mechanisms for these two metals. These data show a Zn concentration difference of up to 13-fold higher in the distal part of the leaf. Also, there was no correlation between the S and Zn concentrations providing further evidence against S-binding ligands. In contrast, Ni was more evenly distributed while a more heterogeneous distribution of Cd was present with some high levels on leaf edges, suggesting that different storage and transport mechanisms are used for the hyperaccumulation of these two metals. These results show the importance of correct sampling when carrying out subcellular localisation studies as the hyperaccumulated elements are not necessarily homogenously distributed over the entire leaf area. The results also have great implications for biotechnological applications of N. caerulescens showing that it may be possible to use the mechanisms employed by N. caerulescens to increase the Zn concentration in nutrient poor crops without increasing the risk of accumulating other toxic elements such as Ni and Cd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technologies, such as Atomic Force Microscopy (AFM), have proven to be one of the most versatile research equipments in the field of nanotechnology by providing physical access to the materials at nanoscale. Working principles of AFM involve physical interaction with the sample at nanometre scale to estimate the topography of the sample surface. Size of the cantilever tip, within the range of few nanometres diameter, and inherent elasticity of the cantilever allow it to bend in response to the changes in the sample surface leading to accurate estimation of the sample topography. Despite the capabilities of the AFM, there is a lack of intuitive user interfaces that could allow interaction with the materials at nanoscale, analogous to the way we are accustomed to at macro level. To bridge this gap of intuitive interface design and development, a haptics interface is designed in conjunction with Bruker Nanos AFM. Interaction with the materials at nanoscale is characterised by estimating the forces experienced by the cantilever tip employing geometric deformation principles. Estimated forces are reflected to the user, in a controlled manner, through haptics interface. Established mathematical framework for force estimation can be adopted for AFM operations in air as well as in liquid mediums.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic zones and associated deformations ahead of a fatigue crack are well established nowadays. In-depth plane strain elasto-plastic finite element analysis is conducted in this investigation to understand the nature of cyclic plastic deformation and damage around soft and hard elliptical inclusions. Similar to fatigue crack tip, cyclic/reverse plastic zone and monotonic plastic zone are visible for soft elliptical inclusion. In the cyclic plastic zone, low cycle fatigue is the dominant cyclic deformation mode during symmetric load cycling, while ratcheting is dominant during asymmetric load cycling. The size of cyclic plastic zone depends upon the amplitude of remote stress while, the size of monotonic plastic zone depends upon the maximum remote stress. The size of monotonic plastic zone is equal to cyclic plastic zone during symmetric load cycling. The shape and size of plastic zones also depend upon the orientation of the soft inclusion. Cyclic plastic damage progression in the cyclic plastic zone for soft (MnS) inclusion is significant, while no cyclic plastic zone is visible for hard inclusion (Al2O3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a finite element cutting modelbased on physical microstructure to investigate the thermomechanicalbehaviour of AL-6XN Super AusteniticStainless Steel in the primary shear zone. Frozen chip rootsamples were created under dry turning operation to observethe plasticity behaviour occurring in the shear zones to comparewith the model for analysis. Chip samples were generatedunder cutting velocities at 65 and 94 m/min, feed rate at0.2 mm/rev and depth of cut at 1 mm. Temperature on thecutting zone was recorded by infrared thermal camera.Secondary and backscatter electron detectors were used toinvestigate the deformed microstructure and to calculate theplastic strain. Experimental results showed the formation ofmicrocracks (build-up edge triggers) at the chip root stagnationzone of both samples. The austenite phase patterns wereevident against the cutting tool tip in the stagnation zone of thechip root fabricated at 65 m/min. The movement of thesepatterns caused the formation of the slip lines within thegrains. The backscatter diffraction maps showed the formationof special grain boundaries within the slip lines, workhardeninglayer and in the chip region. Strain measurementsin the microstructures of the chip roots fabricated at 94 and65 m/min showed high values of 6.5 and 5.7 (mm/mm) respectively.The finite element model was used to measure thestress, strain, temperature and chip morphology. Numericalresults were compared to the outcomes of the experimentalwork to validate the finite element model. The model validatingprocess showed good agreement between theexperimental and numerical results, and the error values werecalculated. For a 94- and 65-m/min cutting speeds, 7.5 and5.2% were the errors in the strain, 3 and 2.5% were the error inthe temperature and 4.7 and 6.8% were the error in the shearplane angles.