29 resultados para synergistic effect


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fabrication of superhydrophobic surfaces with mechanical durability is challenging because the surface microstructure is easily damaged. Herein, we report superhydrophobic conductive graphite nanoplatelet (GNP)/vapor-grown carbon fiber (VGCF)/polypropylene (PP) composite coatings with mechanical durability by a hot-pressing method. The as-prepared GNP/VGCF/PP composite coatings showed water contact angle (WCA) above 150° and sliding angle (SA) less than 5°. The superhydrophobicity was improved with the increase of VGCF content in the hybrid GNP and VGCF fillers. The more VGCFs added in the GNP/VGCF/PP composite coating, the higher porosity on the surface was formed. Compared to the GNP/PP and VGCF/PP composite coatings, the GNP and VGCF hybrid fillers exhibited more remarkable synergistic effect on the electrical conductivity of the GNP/VGCF/PP composite coatings. The GNP/VGCF/PP composite coating with GNP:VGCF = 2:1 possessed a sheet resistance of 1 Ω/sq. After abrasion test, the rough microstructure of the GNP/VGCF/PP (2:1) composite coating was mostly restored and the composite coating retained superhydrophobicity, but not for the VGCF/PP composite coating. When the superhydrophobic surface is mechanically damaged with a loss of superhydrophobicity, it can be easily repaired by a simple way with adhesive tapes. Moreover, the oil-fouled composite surface can regenerate superhydrophobicity by wetting the surface with alcohol and subsequently burning off alcohol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, electrospinnability as well as thermal, rheological, and morphological characteristics of low molecular weight hardwood organosolv lignin, as a potential precursor for carbon fiber, was investigated. Submicromter biobased fibers were electrospun from a wide range of polymer solutions with different ratios of organosolv lignin to polyacrylonitrile (PAN). Rheological studies were conducted by measuring viscosity, surface tension, and electrical conductivity of hybrid polymer solutions, and used to correlate electrospinning behavior of solutions with the morphology of the resultant electrospun composite fibers. Using scanning electron microscopy (SEM) images, the solutions that led to the formation of bead-free uniform fibers were found. Differential scanning calorimetry (DSC) analysis revealed that lignin-based fibers enjoy higher decomposition temperatures than that of pure PAN. Thermal stability of the lignin-based fibers was investigated by thermogravimetric analysis (TGA) indicating a high carbon yield of above 50% at 600 °C, which is highly crucial in the production of low-cost carbon fiber. It was also observed that organosolv lignin synergistically affects thermal decomposition of composite fibers. A significant lower activation energy was found for the pyrolysis of lignin-derived electrospun fibers compared to that of pure PAN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Functionalized gold nanoparticles are emerging as a promising nanocarrier for target specific delivery of the therapeutic molecules in a cancer cell, as a result it targeted selectively to the cancer cell and minimized the off-target effect. The functionalized nanomaterial (bio conjugate) brings novel functional properties, for example, the high payload of anticancer, antioxidant molecules and selective targeting of the cancer molecular markers. The current study reported the synthesis of multifunctional bioconjugate (GNPs-Pep-A) to target the cancer cell. METHODS: The GNPs-Pep-A conjugate was prepared by functionalization of GNPs with peptide-A (Pro-His-Cys-Lys-Arg-Met; Pep-A) using thioctic acid as a linker molecule. The GNPs-Pep-A was characterized and functional efficacy was tested using Retinoblastoma (RB) cancer model in vitro. RESULTS: The GNPs-Pep-A target the reactive oxygen species (ROS) in RB, Y79, cancer cell more effectively, and bring down the ROS up to 70 % relative to control (untreated cells) in vitro. On the other hand, Pep-A and GNPs showed 40 and 9 % reductions in ROS, respectively, compared to control. The effectiveness of bioconjugate indicates the synergistic effect, due to the coexistence of both organic (Pep-A) and inorganic phase (GNPs) in novel GNPs-Pep-A functional material. In addition to this, it modulates the mRNA expression of antioxidant genes glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) by two-threefolds as observed. CONCLUSIONS: The effects of GNPs-Pep-A on ROS reduction and regulation of antioxidant genes confirmed that Vitis vinifera L. polyphenol-coated GNPs synergistically improve the radical scavenging properties and enhanced the apoptosis of cancer cell.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: Erythropoietin (EPO) is a renal cytokine that is primarily involved in hematopoiesis while also playing a role in non-hematopoietic tissues expressing the EPO-receptor (EPOR). The EPOR is present in human skeletal muscle. In mouse skeletal muscle, EPO stimulation can activate the AKT serine/threonine kinase 1 (AKT) signaling pathway, the main positive regulator of muscle protein synthesis. We hypothesized that a single intravenous EPO injection combined with acute resistance exercise would have a synergistic effect on skeletal muscle protein synthesis via activation of the AKT pathway.

METHODS: Ten young (24.2 ± 0.9 years) and 10 older (66.6 ± 1.1 years) healthy subjects received a primed, constant infusion of [ring-13C(6)] L-phenylalanine and a single injection of 10,000 IU epoetin-beta or placebo in a double-blind randomized, cross-over design. 2 h after the injection, the subjects completed an acute bout of leg extension resistance exercise to stimulate skeletal muscle protein synthesis.

RESULTS: Significant interaction effects in the phosphorylation levels of the members of the AKT signaling pathway indicated a differential activation of protein synthesis signaling in older subjects when compared to young subjects. However, EPO offered no synergistic effect on vastus lateralis mixed muscle protein synthesis rate in young or older subjects.

CONCLUSIONS: Despite its ability to activate the AKT pathway in skeletal muscle, an acute EPO injection had no additive or synergistic effect on the exercise-induced activation of muscle protein synthesis or muscle protein synthesis signaling pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here, we for the first time synthesized bimetallic Cu/Ag dendrites on graphene paper (Cu/Ag@G) using a facile electrodeposition method to achieve efficient SERS enhancement. Cu/Ag@G combined the electromagnetic enhancement of Cu/Ag dendrites and the chemical enhancement of graphene. SERS was ascribed to the rough metal surface, the synergistic effect of copper and silver nanostructures and the charge transfer between graphene and the molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Survey-based research explored the moderating effects of "exposure" to the Australian free-to-air telecast of Athens 2004 and "interest" in Olympic Games in developing behavioral intentions to visit Greece in the future. Differences were found between groups with low and high levels of exposure to the telecast, and also between groups with high levels of interest in the Olympic Games, but these were only marginal. When the combinatorial influences of these two variables were considered simultaneously, their effects were generally synergistic. The article calls for further research on this area of mega-events, as the results, while of significance, provide food to continue the broader debate on the role of mega-events in developing tourism to their host destinations after their staging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal (e.g., adhesion) and lateral (friction) forces were measured between physisorbed and chemically grafted layers of hyaluronic acid (HA), an anionic polyelectrolyte in the presence of lubricin (Lub), a mucinous glycoprotein, on mica surfaces using a surface forces apparatus (SFA). This work demonstrates that high friction coefficients between the surfaces do not necessarily correlate with surface damage and that chemically grafted HA acts synergistically with Lub to provide friction reduction and enhanced wear protection to the surfaces. Surface immobilization of HA by grafting is necessary for such wear protection. Increasing the concentration of Lub enhances the threshold load that a chemically grafted HA surface can be subjected to before the onset of wear. Addition of Lub does not have any beneficial effect if HA is physisorbed to the mica surfaces. Damage occurs at loads less than 1 mN regardless of the amount of Lub, indicating that the molecules in the bulk play little or no role in protecting the surfaces from damage. Lub penetrates into the chemically bound HA to form a visco-elastic gel that reduces the coefficient of friction as well as boosts the strength of the surface against abrasive wear (damage).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study describes the synthesis of five novel C2-symmetric organocatalysts that facilitate the on-water asymmetric aldol reaction at low catalyst loading (1 mol%) without the use of additives. Each catalyst is composed of two diprolinamide units joined by a symmetric alkyl bridging group allowing for systematic modulation of catalytic site proximity. Typically, catalysts in this manuscript which bear the catalytic units in close proximity gave the best reaction outcomes in terms of conversion (up to >99%), diastereomeric ratio (4/96, syn/anti) and enantiomeric excess (up to 97%). This effect has been attributed to the assembly of a chiral pocket, facilitated by hydrogen bonding at the oil-in-water interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layered oxides of Sr4Fe4Co2O13 (SFC2) which contains alternating perovskite oxide octahedral and polyhedral oxide double layers are attractive for their mixed ionic and electronic conducting and oxygen reduction reaction properties. In this work, we used the EDTA–citrate synthesis technique to prepare SFC2 and vary the calcination temperature between 900 and 1100 _C to obtain SFC2, containing different phase content of perovskite (denoted as SFC-P) and (Fe,Co) layered oxide phases (SFC-L). Rietveld refinements show that the SFC-P phase content increased from _39 wt% to _50 wt% and _61 wt% as the calcination temperature increased from 900 _C (SFC2-900) to 1000 _C (SFC2-1000) and 1050 _C (SFC2-1050). At 1100 _C (SFC2-1100), SFC-P became the dominant phase. The oxygen transport properties (e.g. oxygen chemical diffusion coefficient and oxygen permeability), electrical conductivity and oxygen reduction reaction activity is enhanced in the order of SFC2-1000, SFC2-1100 and SFC2-1050. The trend established here therefore negates the hypothesis that the perovskite phase content correlates with the oxygen transport property enhancement. The results suggest instead that there is an optimum composition value (e.g. 61 wt% of SFC-L for SFC2-1050 in this work) on which synergistic effects take place between the SFC-P and SFC-L phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions. © 2014 Biophysical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2008, Stodden and colleagues took a unique developmental approach toward addressing the potential role of motor competence in promoting positive or negative trajectories of physical activity, health-related fitness, and weight status. The conceptual model proposed synergistic relationships among physical activity, motor competence, perceived motor competence, health-related physical fitness, and obesity with associations hypothesized to strengthen over time. At the time the model was proposed, limited evidence was available to support or refute the model hypotheses. Over the past 6 years, the number of investigations exploring these relationships has increased significantly. Thus, it is an appropriate time to examine published data that directly or indirectly relate to specific pathways noted in the conceptual model. Evidence indicates that motor competence is positively associated with perceived competence and multiple aspects of health (i.e., physical activity, cardiorespiratory fitness, muscular strength, muscular endurance, and a healthy weight status). However, questions related to the increased strength of associations across time and antecedent/consequent mechanisms remain. An individual’s physical and psychological development is a complex and multifaceted process that synergistically evolves across time. Understanding the most salient factors that influence health and well-being and how relationships among these factors change across time is a critical need for future research in this area. This knowledge could aid in addressing the declining levels of physical activity and fitness along with the increasing rates of obesity across childhood and adolescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2014 The Textile Institute. This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mild steel infrastructure is constantly under corrosive attack in most environmental and industrial conditions. There is an ongoing search for environmentally friendly, highly effective inhibitor compounds that can provide a protective action in situations ranging from the marine environment to oil and gas pipelines. In this work an organic salt comprising a protic imidazolinium cation and a 4-hydroxycinnamate anion has been shown to produce a synergistic corrosion inhibition effect for mild steel in 0.01 M NaCl aqueous solutions under acidic, neutral, and basic conditions; an important and unusual phenomenon for one compound to support inhibition across a range of pH conditions. Significantly, the individual components of this compound do not inhibit as effectively at equivalent concentrations, particularly at pH 2. Immersion studies show the efficacy of these inhibitors in stifling corrosion as observed from optical, SEM, and profilometry experiments. The mechanism of inhibition appears to be dominated by anodic behavior where dissolution of the steel, and in particular the pitting process, is stifled. FTIR spectroscopy provides confirmation of a protective interfacial layer, with the observation of interactions between the steel surface and 4-hydroxycinnamate.