25 resultados para strontium orthosilicate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two Dimensional Linear Discriminant Analysis (2DLDA) has received much interest in recent years. However, 2DLDA could make pairwise distances between any two classes become significantly unbalanced, which may affect its performance. Moreover 2DLDA could also suffer from the small sample size problem. Based on these observations, we propose two novel algorithms called Regularized 2DLDA and Ridge Regression for 2DLDA (RR-2DLDA). Regularized 2DLDA is an extension of 2DLDA with the introduction of a regularization parameter to deal with the small sample size problem. RR-2DLDA integrates ridge regression into Regularized 2DLDA to balance the distances among different classes after the transformation. These proposed algorithms overcome the limitations of 2DLDA and boost recognition accuracy. The experimental results on the Yale, PIE and FERET databases showed that RR-2DLDA is superior not only to 2DLDA but also other state-of-the-art algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transition from fetal to postnatal life involves clearance of liquid from the lung and airways, and rapid formation of a functional residual capacity. Despite the importance of the diaphragm in this process, the impact of birth on the mechanical and functional activity of its muscle fibers is not known. This study determined the contractile characteristics of individual “skinned” diaphragm fibers from 70 days (0.47) gestation to after birth in sheep. Based on differential sensitivity to the divalent ions calcium (Ca2+) and strontium (Sr2+), all fibers in the fetal diaphragm were classified as “fast,” whereas fibers from the adult sheep diaphragm exhibited a “hybrid” phenotype where both “fast” and “slow” characteristics were present within each single fiber. Transition to the hybrid phenotype occurred at birth, was evident after only 40 min of spontaneous breathing, and could be induced by simple mechanical stretch of diaphragm fibers from near-term fetuses (∼147 days gestation). Both physical stretch of isolated fibers, and mechanical ventilation of the fetal diaphragm in situ, significantly increased sensitivity to Ca2+ and Sr2+, maximum force generating capacity, and decreased passive tension in near-term and preterm fetuses; however, only fibers from near-term fetuses showed a complete transition to a “hybrid” activation profile. These findings suggest that stretch associated with the transition from a liquid to air-filled lung at birth induces physical changes of proteins determining the activation and elastic properties of the diaphragm. These changes may allow the diaphragm to meet the increased mechanical demands of breathing immediately after birth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, one-dimensional and quasi-one-dimensional tin dioxide nanowires and nan-owalls were fabricated by the use of the chemical vapor deposition technique. It was demonstrated that the growth and nanostructure of tin oxide can be controlled by varying the thickness of gold layer and the partial pressure of vapor at growing sites. Nanowires with a core-shell structure, i.e., pure tin core and tin oxide shell, were synthesized from C-SnO2 powders at a mol ratio of C/SnO2=3/5 on both silicon and Lanthanum Strontium Co-balt Ferrite ceramic wafers through the vapor-solid mechanism. The conditions that are favorable to the growth of core-shell structure nanowires are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A magnesium-based alloy consisting of, by weight: 0.5 to 1.5% manganese, 0.05 to 0.5% rare earth of which more than 70% is lanthanum, 0 to 1.5% zinc and 0 to 0.1% strontium, the balance being magnesium except for incidental impurities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnesium (Mg) based alloys have been extensively considered for their use as biodegradable implant materials. However, controlling their corrosion rate in the physiological environment of the human body is still a significant challenge. One of the most effective approaches to address this challenge is to carefully select alloying compositions with enhanced corrosion resistance and mechanical properties when designing the Mg alloys. This paper comprehensively reviews research progress on the development of Mg alloys as biodegradable implant materials, highlighting the effects of alloying elements including aluminum (Al), calcium (Ca), lithium (Li), manganese (Mn), zinc (Zn), zirconium (Zr), strontium (Sr) and rare earth elements (REEs) on the corrosion resistance and biocompatibility of Mg alloys, from the viewpoint of the design and utilization of Mg biomaterials. The REEs covered in this review include cerium (Ce), erbium (Er), lanthanum (La), gadolinium (Gd), neodymium (Nd) and yttrium (Y). The effects of alloying elements on the microstructure, corrosion behavior and biocompatibility of Mg alloys have been critically summarized based on specific aspects of the physiological environment, namely the electrochemical effect and the biological behavior. This journal is © the Partner Organisations 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Magnesium-based alloys containing appropriate quantities of Strontium can induce optimal bone formation. Surface modification of these alloys with Collagen-I increased mineral deposition on the peri-implant surface over shorter periods of time as compared to the unmodified alloys, indicating the role of Collagen-I and Strontium concentration in bone resorption and remodelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New 87Sr/86Sr data based on 127 well-preserved and well-dated conodont samples from South China were measured using a new technique (LA-MC-ICPMS) based on single conodont albid crown analysis. These reveal a spectacular climb in seawater 87Sr/86Sr ratios during the Early Triassic that was the most rapid of the Phanerozoic. The rapid increase began in Bed 25 of the Meishan section (GSSP of the Permian-Triassic boundary, PTB), and coincided closely with the latest Permian extinction. Modeling results indicate that the accelerated rise of 87Sr/86Sr ratios can be ascribed to a rapid increase (>2.8×) of riverine flux of Sr caused by intensified weathering. This phenomenon could in turn be related to an intensification of warming-driven runoff and vegetation die-off. Continued rise of 87Sr/86Sr ratios in the Early Triassic indicates that continental weathering rates were enhanced >1.9 times compared to those of the Late Permian. Continental weathering rates began to decline in the middle-late Spathian, which may have played a role in the decrease of oceanic anoxia and recovery of marine benthos. The 87Sr/86Sr values decline gradually into the Middle Triassic to an equilibrium values around 1.2 times those of the Late Permian level, suggesting that vegetation coverage did not attain pre-extinction levels thereby allowing higher runoff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research, strontium (Sr) and surface modification were used to improve the
biocompatibility of titanium (Ti) based implant materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growth mechanism and kinetics of mesoporous silica nanoparticles (MSNs) were investigated for the first time by using a synchrotron time-resolved small-angle X-ray scattering (SAXS) analysis. The synchrotron SAXS offers unsurpassed time resolution and the ability to detect structural changes of nanometer sized objects, which are beneficial for the understanding of the growth mechanism of small MSNs (∼20 nm). The Porod invariant was used to quantify the conversion of tetraethyl orthosilicate (TEOS) in silica during MSN formation, and the growth kinetics were investigated at different solution pH and temperature through calculating the scattering invariant as a function of reaction time. The growth of MSNs was found to be accelerated at high temperature and high pH, resulting in a higher rate of silica formation. Modeling SAXS data of micelles, where a well-defined electrostatic interaction is assumed, determines the size and shape of hexadecyltrimethylammonium bromide (CTAB) micelles before and after the addition of TEOS. The results suggested that the micelle size increases and the micelle shape changes from ellipsoid to spherical, which might be attributed to the solubilization of TEOS in the hydrophobic core of CTAB micelles. A new "swelling-shrinking" mechanism is proposed. The mechanism provides new insights into understanding MSN growth for the formation of functional mesoporous materials exhibiting controlled morphologies. The SAXS analyses were correlated to the structure of CTAB micelles and chemical reaction of TEOS. This study has provided critical information to an understanding of the growth kinetics and mechanism of MSNs.