112 resultados para smart textile


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technical textiles, based on advanced polymeric materials, are an important segment of the synthetic textile market. This area has seen considerable growth in recent times, now accounting for almost 25% of all manufactured synthetic fibres, and has driven the recent development of a range of specialist high performance polymer fibres that are stronger, lighter or have improved heat and fire resistance. However, the increasing size of the market has highlighted the need for materials that have improved performance whilst maintaining low manufacturing costs. These factors have resulted in a change in how new specialty fibres are developed and the emphasis in this field is now on the upgrading or improving of the properties of commodity (conventional) fibres by modifying their properties to suit specific applications.

This paper will describe our work on preparing novel polymer nanocomposite fibres by the addition of clay nanoparticles during melt extrusion. The effect of the nanoparticles on the processing of the fibres and the result on the physical morphology and mechanical properties will be described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a Geometrically Based Single Bounce Elliptical Model (GBSBEM) for multipath components involving randomly placed scatterers in the scattering region with sensors deployed on a field. The system model assumes a cluster based wireless sensor network (WSN) which collects information from the sensors, filters and modulates the data and transmit it through a wireless channel to be collected at the receiver. We first develop a GBSBE model and based on this model we develop our channel model. Use of Smart antenna system at the receiver end, which exploits various receive diversity combining techniques like Maximal Ratio Combining (MRC), Equal Gain Combining (EGC), and Selection Combining (SC), adds novelty to this system. The performance of these techniques have been proved through matlab simulations and further ahead based on different number of antenna elements present at the receiver array, we calculate the performance of our system in terms of bit-error-rate (BER). Based on the transmission power we quantify for the energy efficiency of our communication model.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless broadcasting is an efficient way to broadcast data to a large number of users. Some commercial applications of wireless broadcasting, such as satellite pay-TV, desire that only those users who have paid for the service can retrieve broadcast data. This is often achieved by broadcast encryption, which allows a station securely to broadcast data to a dynamically changing set of privileged users through open air. Most existing broadcast encryption schemes can only revoke a pre-specified number of users before system re-setup or require high computation, communication and storage overheads in receivers. In this paper, we propose a new broadcast encryption scheme based on smart cards. In our scheme, smart cards are used to prevent users from leaking secret keys. Additionally, once an illegally cloned smart card is captured, our scheme also allows tracing of the compromised smart card by which illegal smart cards are cloned, and can then revoke all cloned smart cards. The new features of our scheme include minimal computation needs of only a few modular multiplications in the smart card, and the capability to revoke up to any number of users in one revocation. Furthermore, our scheme is secure against both passive and active attacks and has better performance than other schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The light stability of 0,0-diethyl-0-(4-ethylthiophenyl)phosphorothioate, a parent structure of a new class of fibre-reactive organophosphorus insectproofing agents for use on wool textiles was extensively examined. The rate of degradation of 0,0-diethyl-0-(4-ethylthiophenyl)phosphoro-thioate in polar and non-polar solution and on wool upon irradiation by simulated sunlight was investigated using high performance liquid chromatography.. The major photodegradation products in each case were correlated with the HPLC retention times of synthetically prepared compounds. The main product formed was the sulphoxide, 0,0-diethyl-O-(4-ethylsulphinylphenyl)phosphorothioate, whose insecticidal activity against the major textile pests was shown to be similar to that of the parent compound. In polar solution a polar product which could not be identified was formed. Both 4-ethylsulphinylphenol and 4-ethyIsulphony1-phenol were found on wool but not in solution. The effect of various ultraviolet stabilizers on the rate of photodegradation of 0,0-diethyl-0-(4-ethylthiophenyl)phosphorothioate was also examined. Ultraviolet absorbers of the 2-hydroxybenzophenone and 2-hydroxybenzotriazole classes conferred the best protection in each case. However, on wool typical wool dyes applied at conventional levels were also effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technical textiles, based on advanced polymeric materials, are an important segment of the synthetic textile market. This area has seen considerable growth in recent times, now accounting for almost 25% of all manufactured synthetic fibres, and has driven the recent development of a range of specialist high performance polymer fibres that are stronger, lighter or have improved heat and fire resistance. However, the increasing size of the market has highlighted the need for materials that have improved performance whilst maintaining low manufacturing costs. These factors have resulted in a change in how new specialty fibres are developed and the emphasis in this field is now on the upgrading or improving of the properties of commodity (conventional) fibres by modifying their properties to suit specific applications.

This paper will describe our work on preparing novel polymer nanocomposite fibres by the addition of clay nanoparticles during melt extrusion. The effect of the nanoparticles on the processing of the fibres and the result on the physical morphology and mechanical properties will be described.