60 resultados para semi conducting polymers, electroluminescence, photovoltaics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation of textiles coated with a polymer that conducts electricity showed that they can be used for effectively reflecting and absorbing microwaves. These conducting textiles are an economical, flexible and lightweight alternative to traditional materials for electromagnetic interference shielding of, for instance, sensitive electronic equipment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical synthesis of a tri-layer polypyrrole based actuator optimized for performance was reported. The 0.05 M pyrrole and 0.05 M tetrabutylammonium hexaflurophosphate in propylene carbonate (PC) yielded the optimum performance and stability. The force produced ranged from 0.2 to 0.4mN. Cyclic deflection tests on PC based actuators for 3 hours indicated that the displacement decreased by 60%. PC based actuator had a longer operating time, exceeding 3 hours, compared to acetonitrile based actuators. A triple-layer model of the polymer actuator was developed based on the classic bending beam theory by considering strain electrode material. A tri-layer actuator was fabricated [4, 6], by initially sputter coating a PVDF film with approximately 100nm of gold layer, resulting in a conductive film with a surface resistance of 8-10Ω. The PVDF film was about ~145µm thick had an approximate pore size of 45μm. A solution containing 0.05M distilled pyrrole monomer, 0.05M (TBAPF6) and 1% (w/w) distilled water in PC (propylene carbonate) solution was purged with nitrogen for 15 minutes. The continuity between PPy and PVDF. Results predicted by the model were in good agreement with the experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymers containing incorporated gold or silver nanoparticles have been synthesized using ionic liquid solutions of gold chloride or silver nitrate. Use of the metal salts as the oxidant for monomers such as pyrrole and terthiophene allows the composites to be formed in one simple step, without the need for templates or capping agents. The incorporated metal nanoparticles are clearly visible by TEM, and the composites have been further analyzed by TGA, CV, UV-Vis, Raman, XPS and scanning TEM coupled with EDS analysis. Utilization of an ionic liquid allows the full oxidizing power of the gold chloride to be accessed, resulting in incorporation of metallic gold into the polymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel conducting polymer/non-conducting polymer composite (PEDOT/PEG), produced by vapor phase polymerization of PEDOT in the presence of PEG, shows stable electrocatalytic reduction of protons to hydrogen with conversion currents and over-potential comparable to platinum. The swelling of the composite by PEG and especially its ability to coordinate protons seems to be essential for the catalytic activity of the composite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymer based electrochromic devices were assembled with various ionic liquid (IL) based electrolytes to probe the role of the ion structure on electrochromic performance. When the IL contained the same anion as the dopant ion used in the conducting polymers an enhanced electrochromic performance was observed providing high photopic contrast at low applied potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose oxidase (GOx) is an important enzyme with great potential application for enzymatic sensing of glucose, in implantable biofuel cells for powering of medical devices in vivo and for large-scale biofuel cells for distributed energy generation. For these applications, immobilisation of GOx and direct transfer of electrons from the enzyme to an electrode material is required. This paper describes synthesis of conducting polymer (CP) structures in which GOx has been entrained such that direct electron transfer is possible between GOx and the CP. CP/enzyme composites prepared by other means show no evidence of such “wiring”. These materials therefore show promise for mediator-less electronic connection of GOx into easily produced electrodes for biosensing or biofuel cell applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymers-based gas sensors have attracted increasing research attention these years. The introduction of inorganic sensitizers (noble metals or inorganic semiconductors) within the conducting polymers-based gas sensors has been regarded as the generally effective route for further enhanced sensors. Here we demonstrate a novel route for highly-efficient conducting polymers-based gas sensors by introduction of polymeric sensitizers (polymeric adsorbent) within the conducting polymeric nanostructures to form onedimensional polymeric adsorbent/conducting polymer core−shell nanocomposites, via electrospinning and solution-phase polymerization. The adsorption effect of the SPEEK toward NH3 can facilitate the mass diffusion of NH3 through the PPy layers, resulting in the enhanced sensing signals. On the basis of the SPEEK/PPy nanofibers, the sensors exhibit large gas responses, even when exposed to very low concentration of NH3 (20 ppb) at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(styrene-β-isobutylene-β-styrene)-poly(3-hexylthiophene) (SIBS-P3HT) conducting composite fibers are successfully produced using a continuous flow approach. Composite fibers are stiffer than SIBS fibers and able to withstand strains of up 975% before breaking. These composite fibers exhibit interesting reversible mechanical and electrical characteristics, which are applied to demonstrate their strain gauging capabilities. This will facilitate their potential applications in strain sensing or elastic electrodes. Here, the fabrication and characterization of highly stretchable electrically conducting SIBS-P3HT fibers using a solvent/non-solvent wet-spinning technique is reported. This fabrication method combines the processability of conducting SIBS-P3HT blends with wet-spinning, resulting in fibers that could be easily spun up to several meters long. The resulting composite fiber materials exhibit an increased stiffness (higher Young’s modulus) but lower ductility compared to SIBS fibers. The fibers’ reversible mechanical and electrical characteristics are applied to demonstrate their strain gauging capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biosynthetic platform composed of a conducting polypyrrole sheet embedded with unidirectional biodegradable polymer fibers is described (see image; scale bar = 50 µm). Such hybrid systems can promote rapid directional nerve growth for neuro-regenerative scaffolds and act as interfaces between the electronic circuitry of medical bionic devices and the nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general method for the generation of two-dimensional (2D) ordered, large-area, and liftable conducting polymer-nanobowl sheet has been demonstrated via chemical polymerization for the first time. The sheet is made using the monolayer self-assembled from polystyrene (PS) spheres at the aqueous/air interface as template, followed by depositing conducting polymer on the part of PS monolayer submerging in the aqueous phase via chemical polymerization, and core extraction. During the process of polymerization, no substrate is required, which caused the as-prepared patterned conducting polymer sheet can be easily lifted-off and deposited, in full size, on any flat substrate. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectrum were used to characterize the products

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective functional innervation of medical bionic devices, as well as re-innervation of target tissue in nerve and spinal cord injuries, requires a platform that can stimulate and orientate neural growth. Gordon Wallace and co-workers report on p. 4393 that conducting and nonconducting biodegradable polymers show excellent potential as suitable hybrid substrata for neural regeneration and may form the basis of electrically active conduits designed to accelerate nerve repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a four-step method starting from pyrrole, the synthesis of 3-iso-butylpyrrole and 3-iso-pentylpyrrole, was achieved in 45 and 44% yields, respectively. Polymerization studies of these branched alkyl pyrroles are described and the results compared with those obtained for the unbranched structural isomers n-butyl and n-pentylpyrrole. A series of conductive textiles were produced by the chemical polymerization of the iso-alkylpyrroles using both solution and vapour polymerization techniques. Fabrics coated with poly-iso-alkylpyrrole formed using the solution polymerization method had a lower surface resistance than those formed using the vapour polymerization method. These conductivity results were in direct contrast to those previously obtained for 3-n-alkylpyrroles on fabrics. A remarkable crystal-like growth on the surface of the textile fabric was observed when solution polymerization of 3-iso-pentylpyrrole was employed—reinforcing the notion that subtle changes in monomer structure can drastically affect bulk polymer properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface resistance of polypyrrole (PPy)-coated polyester fabrics was investigated and related to coating thickness, which was controlled by adjusting the reactant concentrations. The thickness of the coating initially increased rapidly followed by a steady increase when the concentration of pyrrole (Py) was larger than a concentration of approximately 0.4 mg/ml. The surface resistance decreased from 106 to 103 Ω with increase in pyrrole concentration within 0.2 mg/ml until the concentration reached a value of about 0.4 mg/ml, above which the rate of decrease diminished. The effect of initial treatment with monomer or oxidant prior to polymerisation reaction with regards to thickness and surface resistance was minimal. The immersion time of the textile into the monomer solution prior to polymerisation reaction did not have a significant effect on the abrasion resistance.