27 resultados para pyruvate dehydrogenase complex e2 subunit antibody


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovery after prolonged or high-intensity exercise is characterised by a substantial increase in adipose tissue lipolysis, resulting in elevated rates of plasma-derived fat oxidation. Despite the large increase in circulating fatty acids (FAs) after exercise, only a small fraction of this is taken up by exercised muscle in the lower extremities. Indeed, the predominant fate of non-oxidised FAs derived from post-exercise lipolysis is reesteriflcation hi the liver. During recovery from endurance exercise, a number of changes also occur hi skeletal muscle that allow for a high metabolic priority towards glycogen resynthesis. Reducing muscle glycogen during exercise potentiates these effects, however the cellular and molecular mechanisms regulating substrate oxidation following exercise remain poorly defined. The broad arm of this thesis was to examine the regulation of fat metabolism during recovery from glycogen-lowering exercise hi the presence of altered fat and glucose availability. In study I, eight endurance-trained males completed a bout of exhaustive exercise followed by ingestion of carbohydrate (CHO)-rich meals (64-70% of energy from CHO) at 1, 4, and 7 h of recovery. Duplicate muscle biopsies were obtained at exhaustion and 3, 6 and 18 h of recovery. Despite the large intake of CHO during recovery (491 ± 28 g or 6.8 + 0.3 g • kg-1), respiratory exchange ratio values of 0.77 to 0.84 indicated a greater reliance on fat as an oxidative fuel. Intramuscular triacylglycerol (IMTG) content remained unchanged in the presence of elevated glucose and insulin levels during recovery , suggesting IMTG has a negligible role in contributing to the enhanced fat oxidation after exhaustive exercise. It appears that the partitioning of exogenous glucose towards glycogen resynthesis is of high metabolic priority during immediate post-exercise recovery, supported by the trend towards reduced pyruvate dehydrogenase (PDH) activity and increased fat oxidation. The effect of altering plasma FA availability during post-exercise recovery was examined in study II. Eight endurance-trained males performed three trials consisting of glycogen-lowering exercise, followed by infusion of either saline (CON), saline + nicotinic acid (NA) (LFA) or Intralipid and heparin (HFA). Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Altering the availability of plasma FAs during recovery induced changes in whole-body fat oxidation that were unrelated to differences in skeletal muscle malonyl-CoA. Furthermore, fat oxidation and acetyl-CoA carboxylase (ACC) phosphorylation appear to be dissociated after exercise, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity have an important role in regulating malonyl-CoA and fat metabolism in human skeletal muscle after exercise. Alternative mechanisms include citrate and long-chain fatty acyl-CoA mediated changes in ACC activity, or differences in malonyl-CoA decarboxylase (MCD) activity. Reducing plasma FA concentrations with NA attenuated the post-exercise increase in MCD and pyruvate dehydrogenase kinase 4 (PDK4) gene expression, suggesting that FAs and/or other factors induced by NA are involved hi the regulation of these genes. Despite marked changes hi plasma FA availability, no significant changes in IMTG concentration were detected, providing further evidence that plasma-derived FAs are the preferential fuel source contributing to the enhanced fat oxidation post-exercise during recovery. To further examine the effect of substrate availability after exercise, Study III investigated the regulation of fat metabolism during a 6 h recovery period with or without glucose infusion. Enhanced glucose availability significantly increased CHO oxidation compared with the fasted state, although no differences in whole-body fat oxidation were apparent. Consistent with the similar rates of fat metabolism, no difference hi AMPK or ACCβ phosphorylation were observed between trials. In addition, no significant treatment or time effects for IMTG concentration were detected during recovery. The large exercise-induced PDK4 gene expression was attenuated when plasma FAs were reduced during glucose infusion, supporting the hypothesis that PDK4 is responsive to sustained changes in lipid availability and/or changes in plasma insulin. Furthermore, the possibility exists that the suppression of PDK4 mRNA also reduced PDK activity and thus maintained PDH activity to account for the higher rates of CHO oxidation observed during glucose infusion compared with the control trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-volume ‘sprint’ interval training (SIT) stimulates rapid improvements in muscle oxidative capacity that are comparable to levels reached following traditional endurance training (ET) but no study has examined metabolic adaptations during exercise after these different training strategies. We hypothesized that SIT and ET would induce similar adaptations in markers of skeletal muscle carbohydrate (CHO) and lipid metabolism and metabolic control during exercise despite large differences in training volume and time commitment. Active but untrained subjects (23 ± 1 years) performed a constant-load cycling challenge (1 h at 65% of peak oxygen uptake before and after 6 weeks of either SIT or ET (n = 5 men and 5 women per group). SIT consisted of four to six repeats of a 30 s ‘all out’ Wingate Test (mean power output ∼500 W) with 4.5 min recovery between repeats, 3 days per week. ET consisted of 40–60 min of continuous cycling at a workload that elicited ∼65% (mean power output ∼150 W) per day, 5 days per week. Weekly time commitment (∼1.5 versus ∼4.5 h) and total training volume (∼225 versus ∼2250 kJ week−1) were substantially lower in SIT versus ET. Despite these differences, both protocols induced similar increases (P < 0.05) in mitochondrial markers for skeletal muscle CHO (pyruvate dehydrogenase E1α protein content) and lipid oxidation (3-hydroxyacyl CoA dehydrogenase maximal activity) and protein content of peroxisome proliferator-activated receptor-γ coactivator-1α. Glycogen and phosphocreatine utilization during exercise were reduced after training, and calculated rates of whole-body CHO and lipid oxidation were decreased and increased, respectively, with no differences between groups (all main effects, P < 0.05). Given the markedly lower training volume in the SIT group, these data suggest that high-intensity interval training is a time-efficient strategy to increase skeletal muscle oxidative capacity and induce specific metabolic adaptations during exercise that are comparable to traditional ET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Defects in muscle glucose metabolism are linked to type 2 diabetes. Mechanistic studies examining these defects rely on the use of high fat-fed rodent models and typically involve the determination of muscle glucose uptake under insulin-stimulated conditions. While insightful, they do not necessarily reflect the physiology of the postprandial state. In addition, most studies do not examine aspects of glucose metabolism beyond the uptake process. Here we present an approach to study rodent muscle glucose and intermediary metabolism under the dynamic and physiologically relevant setting of the oral glucose tolerance test (OGTT). METHODS AND RESULTS: In vivo muscle glucose and intermediary metabolism was investigated following oral administration of [U-(13)C] glucose. Quadriceps muscles were collected 15 and 60 min after glucose administration and metabolite flux profiling was determined by measuring (13)C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates via gas chromatography-mass spectrometry. While no dietary effects were noted in the glycolytic pathway, muscle from mice fed a high fat diet (HFD) exhibited a reduction in labelling in TCA intermediates. Interestingly, this appeared to be independent of alterations in flux through pyruvate dehydrogenase. In addition, our findings suggest that TCA cycle anaplerosis is negligible in muscle during an OGTT. CONCLUSIONS: Under the dynamic physiologically relevant conditions of the OGTT, skeletal muscle from HFD fed mice exhibits alterations in glucose metabolism at the level of the TCA cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rationale Cardiac metabolism is thought to be altered in insulin resistance and type 2 diabetes (T2D). Our understanding of the regulation of cardiac substrate metabolism and insulin sensitivity has largely been derived from ex vivo preparations which are not subject to the same metabolic regulation as in the intact heart in vivo. Studies are therefore required to examine in vivo cardiac glucose metabolism under physiologically relevant conditions. Objective To determine the temporal pattern of the development of cardiac insulin resistance and to compare with dynamic approaches to interrogate cardiac glucose and intermediary metabolism in vivo. Methods and results Studies were conducted to determine the evolution of cardiac insulin resistance in C57Bl/6 mice fed a high-fat diet (HFD) for between 1 and 16 weeks. Dynamic in vivo cardiac glucose metabolism was determined following oral administration of [U-13C] glucose. Hearts were collected after 15 and 60 min and flux profiling was determined by measuring 13C mass isotopomers in glycolytic and tricarboxylic acid (TCA) cycle intermediates. Cardiac insulin resistance, determined by euglycemic-hyperinsulinemic clamp, was evident after 3 weeks of HFD. Despite the presence of insulin resistance, in vivo cardiac glucose metabolism following oral glucose administration was not compromised in HFD mice. This contrasts our recent findings in skeletal muscle, where TCA cycle activity was reduced in mice fed a HFD. Similar to our report in muscle, glucose derived pyruvate entry into the TCA cycle in the heart was almost exclusively via pyruvate dehydrogenase, with pyruvate carboxylase mediated anaplerosis being negligible after oral glucose administration. Conclusions Under experimental conditions which closely mimic the postprandial state, the insulin resistant mouse heart retains the ability to stimulate glucose metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phylogenetic relationships among 32 individuals of Australian freshwater crayfish belonging to the Cherax destructor-complex were investigated using a dataset comprising sequences from four mitochondrial gene regions: the large subunit rRNA (16S rRNA), cytochrome oxidase I (COI), adenosine triphosphatase 6 (ATPase 6), and cytochrome oxidase III (COIII). A total of 1602 bp was obtained, and a combined analysis of the data produced a tree with strong support (bootstrap values 94–100%) for three divergent lineages, verifying the phylogenetic hypotheses of relationships within the C. destructor species-complex suggested in previous studies. Overall, sequences from the 16S rRNA gene showed the least variation compared to those generated from protein coding genes, which presented considerably greater levels of divergence. The level of divergence within C. destructor was found to be greater than that observed in other species of freshwater crayfish, but interspecific variation among species examined in the present study was similar to that reported previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cleavage and polyadenylation factor (CPF) is a multi‐protein complex that functions in pre‐mRNA 3′‐end formation and in the RNA polymerase II (RNAP II) transcription cycle. Ydh1p/Cft2p is an essential component of CPF but its precise role in 3′‐end processing remained unclear. We found that mutations in YDH1 inhibited both the cleavage and the polyadenylation steps of the 3′‐end formation reaction in vitro. Recently, we demonstrated that an important function of CPF lies in the recognition of poly(A) site sequences and RNA binding analyses suggesting that Ydh1p/Cft2p interacts with the poly(A) site region. Here we show that mutant ydh1 strains are deficient in the recognition of the ACT1 cleavage site in vivo. The C‐terminal domain (CTD) of RNAP II plays a major role in coupling 3′‐end processing and transcription. We provide evidence that Ydh1p/Cft2p interacts with the CTD of RNAP II, several other subunits of CPF and with Pcf11p, a component of CF IA. We propose that Ydh1p/Cft2p contributes to the formation of important interaction surfaces that mediate the dynamic association of CPF with RNAP II, the recognition of poly(A) site sequences and the assembly of the polyadenylation machinery on the RNA substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc1 strongly interacts with itself. Inactivation of either Bre2 or Sdc1 has very similar effects. Neither is required for complex integrity, and their removal results in an increase of H3K4 mono- and dimethylation and a severe decrease of trimethylation at the 5′ end of active coding regions but a decrease of H3K4 dimethylation at the 3′ end of coding regions. Cells lacking Spp1 have a reduced amount of Set1 and retain a fraction of trimethylated H3K4, whereas cells lacking Shg1 show slightly elevated levels of both di- and trimethylation. Set1C associates with both serine 5- and serine 2-phosphorylated forms of polymerase II, indicating that the association persists to the 3′ end of transcribed genes. Taken together, our results suggest that Set1C subunits stimulate Set1 catalytic activity all along active genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During meiosis, combinatorial associations of genetic traits arise from homologous recombination between parental chromosomes. Histone H3 lysine 4 trimethylation marks meiotic recombination hotspots in yeast and mammals, but how this ubiquitous chromatin modification relates to the initiation of double-strand breaks (DSBs) dependent on Spo11 remains unknown. Here, we show that the tethering of a PHD-containing protein, Spp1 (a component of the COMPASS complex), to recombinationally cold regions is sufficient to induce DSB formation. Furthermore, we found that Spp1 physically interacts with Mer2, a key protein of the differentiated chromosomal axis required for DSB formation. Thus, by interacting with H3K4me3 and Mer2, Spp1 promotes recruitment of potential meiotic DSB sites to the chromosomal axis, allowing Spo11 cleavage at nearby nucleosome-depleted regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the successful clinical trials, multifunctional glycoprotein bovine lactoferrin is gaining attention as a safe nutraceutical and biologic drug targeting cancer, chronic-inflammatory, viral and microbial diseases. Interestingly, recent findings that human lactoferrin oligomerizes under simulated physiological conditions signify the possible role of oligomerization in the multifunctional activities of lactoferrin molecule during infections and in disease targeting signaling pathways. Here we report the purification and physicochemical characterization of high molecular weight biomacromolecular complex containing bovine lactoferrin (≥250 kDa), from bovine colostrum, a naturally enriched source of lactoferrin. It showed structural similarities to native monomeric iron free (Apo) lactoferrin (∼78-80 kDa), retained anti-bovine lactoferrin antibody specific binding and displayed potential receptor binding properties when tested for cellular internalization. It further displayed higher thermal stability and better resistance to gut enzyme digestion than native bLf monomer. High molecular weight bovine lactoferrin was functionally bioactive and inhibited significantly the cell proliferation (p<0.01) of human breast and colon carcinoma derived cells. It induced significantly higher cancer cell death (apoptosis) and cytotoxicity in a dose-dependent manner in cancer cells than the normal intestinal cells. Upon cellular internalization, it led to the up-regulation of caspase-3 expression and degradation of actin. In order to identify the cutting edge future potential of this bio-macromolecule in medicine over the monomer, its in-depth structural and functional properties need to be investigated further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Tasmanian devil (Sarcophilus harrisii) immune system has recently been under scrutiny because of the emergence of a contagious cancer, which has decimated devil numbers. Here we provide a comprehensive description of the Tasmanian devil immunoglobulin variable regions. We show that heavy chain variable (VH) and light chain variable (VL) repertoires are similar to those described in other marsupial taxa: VL diversity is high, but VH diversity is restricted and belongs only to clan III. As in other mammals, one VH and one Vλ germline family and multiple incomplete Vκ germline sequences were identified in the genome. High Vκ variation was observed in transcripts and we predict that it may have arisen by gene conversion and/or somatic mutations, as it does not appear to have originated from germline variation. Phylogenetic analyses revealed that devil VL gene segments are highly complex and ancient, with some lineages predating the separation of marsupials and eutherians. These results indicate that although the evolutionary history of immune genes lead to the expansions and contractions of immune gene families between different mammalian lineages, some of the ancestral immune gene variants are still maintained in extant species. A high degree of similarity was found between devil and other marsupial VH segments, demonstrating that they originated from a common clade of closely related sequences. The VL families had a higher variation than VH both between and within species. We suggest that, similar to other studied marsupial species, the complex VL segment repertoire compensates for the limited VH diversity in Tasmanian devils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of antilopine wallaroo, Macropus antilopinus, is marked by a break in the species’ range between Queensland and the Northern Territory, coinciding with the Carpentarian barrier. Previous work on M. antilopinus revealed limited genetic differentiation between the Northern Territory and Queensland M. antilopinus populations across this barrier. The study also identified a number of divergent lineages in the Northern Territory, but was unable to elucidate any geographic structure. Here, we re-examine these results to (1) determine phylogeographic patterns across the range of M. antilopinus and (2) infer the biogeographic barriers associated with these patterns. The tropical savannahs of northern Australia: from the Cape York Peninsula in the east, to the Kimberley in the west. We examined phylogeographic patterns in M. antilopinus using a larger number of samples and three mtDNA genes: NADH dehydrogenase subunit 2, cytochrome b, and the control region. Two datasets were generated and analyzed: (1) a subset of samples with all three mtDNA regions concatenated together and (2) all samples for just control region sequences that included samples from the previous study. Analysis included generating phylogenetic trees based on Bayesian analysis and intraspecific median-joining networks. The contemporary spatial structure of M. antilopinus mtDNA lineages revealed five shallow clades and a sixth, divergent lineage. The genetic differences that we found between Queensland and Northern Territory M. antilopinus samples confirmed the split in the geographic distribution of the species. We also found weak genetic differentiation between Northern Territory samples and those from the Kimberley region of Western Australia, possibly due to the Kimberley Plateau–Arnhem Land barrier. Within the Northern Territory, two clades appear to be parapatric in the west, while another two clades are broadly sympatric across the Northern Territory. MtDNA diversity of M. antilopinus revealed an unexpectedly complex evolutionary history involving multiple sympatric and parapatric mtDNA clades across northern Australia. These phylogeographic patterns highlight the importance of investigating genetic variation across distributions of species and integrating this information into biodiversity conservation.