106 resultados para polypyrrole dispersions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethyleneterephtalate–polypyrrole (PET–PPy) textile complexes incorporating different anionic dopants have been heat treated at 60 °C, 80 °C, 105 °C, 125 °C and 150 °C to investigate effects of short-term heating on conductivity and stability. In most cases heat treatments below 80 °C did not significantly change the final resistance of the conducting textiles. Only the anionic dye-dopant Indigo Carmine acted in a heat-stabilizing manner during treatment at 150 °C, while all samples containing other anionic dopant underwent some degradation. A treatment temperature of 125 °C was the most effective for lowering the final resistance, with sulphonic group containing dopants being particularly effective in improving conductivity and stability. A 29% decrease in the final resistance of a PET–PPy/para-toluene-2-sulphonic acid (pTSA) sample was achievable after 900 s at 125 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature changes in conducting polypyrrole/para-toluene-2-sulphonic acid (PPy/pTSA) coated nylon textiles due to microwave absorption in the 8–9 GHz and 15–16 GHz frequency ranges were obtained by a thermography station during simultaneous irradiation of the samples. The temperature values are compared and related to the amounts of reflection, transmission and absorption obtained with a non-contact free space transmission technique, indicating a relationship between microwave absorption and temperature increase. Non-conductive samples showed no temperature increase upon irradiation irrespective of frequency range. The maximum temperature difference of around 4 °C in the conducting fabrics relative to ambient temperature was observed in samples having 48% absorption and 26.5 ± 4% reflection. Samples polymerized for 60 or 120 min with a dopant concentration of 0.018 mol/l or polymerized for 180 min with a dopant concentration of 0.009 mol/l yielded optimum absorption levels. As the surface resistivity decreased and the reflection levels increased, the temperature increase upon irradiation reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long term performance of conductivity of p-toluene sulfonic acid (pTSA) doped electrochemically synthesized polypyrrole (PPy) films was estimated from accelerated aging studies between 80 °C and 120 °C. Conductivity decay experiments indicated that overall aging behavior of PPy films deviated from first order kinetics at prolonged aging times at elevated temperatures. However, an approximate value for the activation energy of the conductivity decay of PPy was calculated as E=47.4 kJ/mol, enabling an estimate of a rate constant of k=8.35×10−6/min at 20 °C. The rate of decrease of conductivity was not only temperature dependent but also influenced by the dopant concentration. A concentration of 0.005 M pTSA in the electrolyte resulted in a conductive film and when this film was exposed to 120 °C for a period of 40 h, the conductivity decayed to about 1/20 of its original value. The concentration of pTSA was increased to 0.05 mol/l and when the resulting film was aged in the same way, it showed a decrease in the conductivity to about 1/3 of its original value. Both microwave transmission and dc conductivity data revealed that highly doped films were considerably more electrically stable than lightly doped films. The dopant had a preserving effect on the electrical properties of PPy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research first clarified a possible chemical reaction between a dispersing dye and the conducting polymer polypyrrole. Then, the effect of acidic dyes as dopants on the colours, conductivity and thermal stability of polypyrrole were measured. Finally, the polypyrrole nanoparticles were prepared by a microemulsion polymerisation technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray diffraction (XRD) was employed to characterize electrochemically synthesized polypyrrole (PPy) films with 1,5-naphthalene disulfonate (1,5-NDS) counterions treated with simple acid and base. Results show that the as-synthesized film is amorphous with short-range ordering in the polymer backbone. This ordering is soon lost after thermal ageing at 150°C for 60 days and there is evidence of counterion degradation. Base treatment of the PPy/1,5-NDS films has similar effects leading to a complete loss of ordering in the polymer backbone and dedoping of the polymer. Acid treatment at high temperatures increases the ordering of the polymer backbone and results in the development of a secondary interdopant peak confirming that ion exchange has occurred. Conductivity of the PPy was also increased substantially. The enhanced ordering was maintained even after thermal ageing. Room-temperature acid treatment also results in improved ordering of the polymer as well as the counterion but the increase in conductivity is only marginal and most of the ordering is soon lost after thermal ageing. Increase in ordering of the polymer structure seems to lead to better conductivity, although not necessarily improved thermal stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major problems associated with the use of polypyrrole (PPy) in a practical engineering application is its poor thermal stability at elevated temperatures, especially in the presence of oxygen and moisture. Several authors have shown that enhanced stability can be achieved through treatment with simple acids and bases. This paper presents a summary of the possible structural changes which occur as a result of these treatments and those that appear to be related to enhanced conductivity stability. A slight increase in conductivity (10–20%) is observed for acid treated PPy films which is found to be the result of protonation of the pyrrole structure. This effect is dramatically enhanced by treatment at high temperatures where an increase in conductivity of >84% can be achieved. Base treatment of the PPy films results in the deprotonation of the pyrrole structure leading to the loss of conductivity (>40%). Preliminary X-ray Photoelectron Spectroscopy (XPS) results indicate that both acid and base treatment resulted in the elimination of reactive sites for oxygen. Long term thermal ageing of these treated films were conducted at 150 °C in air. The conductivity decay behaviour was found to follow multiple first order chemical reaction kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrodeposited polypyrrole films prepared with paratoluenesulfonate (pTS), dodecylsulfate (DDS) and perchlorate anions were treated with acidic and basic solutions, and their structure was investigated by 13C solid state n.m.r. spectroscopy. This technique has confirmed that pTS is completely removed from the film in both acidic and basic solutions whilst DDS is only partially removed and tends to decompose upon treatment with H2SO4. The appearance of shoulders at 143 ppm upon treatment with 0.5 M base indicates formation of a quinoid pyrrole structure. Substitution on the β-carbon by OH cannot be confirmed from the present spectra. Stronger base causes a more dramatic change in the polypyrrole backbone with an obvious increase in the electron density on the β-carbons, consistent with the reduction of the carbon backbone. There is no indication of quinoid units in this case. Acid treatments result in considerable broadening of the main 127 ppm polypyrrole peak.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

13C nuclear magnetic resonance (n.m.r.) has been used to study polypyrrole and N-substituted polypyrrole in the solid state. The extent of oxidation appears to be counterion-dependent; in particular, the quinoid structure appears favoured in the films prepared with dodecyl sulfate. Resonances associated with the quinoid unit are lost upon reduction of the polypyrrole film, which supports the idea that the quinoid structure is associated with the oxidized form of polypyrrole. N-substituted polypyrroles have a more distinct resonance at 110 ppm, which is linked to lower degrees of oxidation or charge delocalization in these systems. The decrease in conductivity of polypyrrole upon thermal ageing in air is associated with both the loss of counterion (‘thermal dedoping’) and the decomposition of the quinoid structure in the polymer backbone. There is no indication of carbonyl formation in the solid-state n.m.r. spectra obtained in the present study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical synthesis of inherently conducting polymers such as polypyrrole is traditionally performed in a molecular solvent/electrolyte system such acetonitrile/lithium perchlorate. We report the use of ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) amide and N,N-butylmethylpyrrolidinium bis(trifluoromethanesulfonyl) amide, both as the growth medium and as an electrolyte for the electrochemical cycling of polypyrrole films. Use of the ionic liquid as the growth medium results in significantly altered film morphologies and improved electrochemical activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

31P, 19F and 13C solid state NMR analysis has been used to investigate the intercalation/de-intercalation of both anions and cations in electrochemically synthesized polypyrrole films. Use of a phosphonium-based ionic liquid, tri(hexyl)(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide, allows the separate detection of the cation and anion by analysis of the phosphorous and fluorine resonances, respectively. Initial results indicate the incorporation of both cations and anions during film growth in the ionic liquid. There is a notable change in the 31P chemical shift of the cation on incorporation into the film, consistent with a significant change in environment compared to the pure ionic liquid. Despite its large size, the phosphonium cation can be completely expelled from the film by oxidation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of electrochemically prepared polypyrrole (PPy) films with p-toluenesulfonate (pTS) or perchlorate (ClO4) counterion (PPy/pTS and PPy/ClO4) is improved by simple treatment with aqueous sulfuric acid, sodium sulfate or sodium bisulfate. The degree of stabilization achieved depends on the solution, temperature and duration of treatment. Although the mechanism for improved stability is not yet clear, it is apparent that the level of ion exchange and the original polymer microstructure are important. A model for the conductivity decay as a function of thickness has been proposed. The early stages of ion exchange are not symmetrical, and diffusion is facilitated at the electrode side of the film. Furthermore, X-ray diffraction shows no evidence of morphological change after treatment of PPy/pTS (43 μm), but in PPy/pTS (12 μm) and PPy/ClO4 (41 μm) films an additional peak is indicative of more ordered structure following treatment. The glass transition temperature, Tg, of PPy/pTS and PPy/ClO4 films obtained by modulated differential scanning calorimetry is approximately 155°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal stability of electrochemically prepared polypyrrole (PPy) films with p-toluene sulfonate (pTS) or perchlorate (CIOP4) counter ion (PPy/pTS and PPy/ClO4) is improved by simple treatment with aqueous sulfuric acid, sodium sulfate or sodium bisulfate. The degree of stabilization achieved depends on the solution, temperature and duration of treatment. PPy/pTS is easily stabilized and thick films (43μm) retain 90 % of the initial conductivity after long period (300 h) at 150 °C, while thinner films (12 μm) retain slightly less (70 %). A model for the conductivity decay has been proposed. Although the mechanism for improved stability is not yet clear it is apparent that the level of ion exchange and the original polymer microstructure are important. The early stages of ion exchange are not symmetrical and diffusion is facilitated at the electrode side of the film. Furthermore, X-ray diffraction shows no evidence of morphological change after treatment of thick PPy/pTS but in thin PPy/pTS and PPy/ClO4 films an additional peak is indicative of more ordered structure following treatment. These observation may imply that there is a higher density of crosslinks and branching at the growth side than at the electrode side of the film.