23 resultados para plane wave method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Method of detecting an event in electrical apparatus (146, 148, 150). Electromagnetic radiation from the apparatus, characteristic of the event, is detected. An electrical signal is generated, this representing the electromagnetic radiation. The signal is subjected to non-stationary wave signal analysis to generate an output indicative of the detecting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Method of detecting an event in electrical apparatus (146, 148, 150). Electromagnetic radiation from the apparatus, characteristic of the event, is detected. An electrical signal is generated, this representing the electromagnetic radiation. The signal is subjected to non-stationary wave signal analysis to generate an output indicative of the detecting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral element method is very efficient in modelling high-frequency stress wave propagation because it works in the frequency domain. It does not need to use very fine meshes in order to capture high frequency wave energy as the time domain methods do, such as finite element method. However, the conventional spectral element method requires a throw-off element to be added to the structural boundaries to act as a conduit for energy to transmit out of the system. This makes the method difficult to model wave reflection at boundaries. To overcome this limitation, imaginary spectral elements are proposed in this study, which are combined with the real structural elements to model wave reflections at structural boundaries. The efficiency and accuracy of this proposed approach is verified by comparing the numerical simulation results with measured results of one dimensional stress wave propagation in a steel bar. The method is also applied to model wave propagation in a steel bar with not only boundary reflection, but also reflections from single and multiple cracks. The reflection and transmission coefficients, which are obtained from the discrete spring model, are adopted to quantify the discontinuities. Experimental tests of wave propagation in a steel bar with one crack of different depths are also carried out. Numerical simulations and experimental results show that the proposed method is effective and reliable in modelling wave propagation in one-dimensional waveguides with reflections from boundary and structural discontinuities. The proposed method can be applied to effectively model stress wave propagation for structural damage detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sleep stage identification is the first step in modern sleep disorder diagnostics process. K-complex is an indicator for the sleep stage 2. However, due to the ambiguity of the translation of the medical standards into a computer-based procedure, reliability of automated K-complex detection from the EEG wave is still far from expectation. More specifically, there are some significant barriers to the research of automatic K-complex detection. First, there is no adequate description of K-complex that makes it difficult to develop automatic detection algorithm. Second, human experts only provided the label for whether a whole EEG segment contains K-complex or not, rather than individual labels for each subsegment. These barriers render most pattern recognition algorithms inapplicable in detecting K-complex. In this paper, we attempt to address these two challenges, by designing a new feature extraction method that can transform visual features of the EEG wave with any length into mathematical representation and proposing a hybrid-synergic machine learning method to build a K-complex classifier. The tenfold cross-validation results indicate that both the accuracy and the precision of this proposed model are at least as good as a human expert in K-complex detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effect of various aging environments on the painted surface finish of unidirectional carbon fibre composite laminates, manufactured by autoclave and a novel out-of-autoclave technique was investigated. Laminates were exposed to water immersion, 95 % relative humidity and cyclic environments for 552 h and the surface finish was evaluated using visual and wave-scan distinctness of image (DOI) techniques. It was found that the laminate surface finish was dependent on the amount of moisture in the aging test. Minor surface waviness occurred on the laminates exposed to the cyclic test, whereas, surface waviness, print through and DOI values were all significantly higher as the laminates absorbed larger quantities of moisture from the hygrothermal and hydrothermal tests. The water immersion test, which was the most detrimental to the surface finish of the painted laminates, produced dense blistering on the autoclave manufactured laminate surface whereas the out-of-autoclave laminate surface produced only a few. It was found that the out-of-autoclave laminate had high substrate surface roughness which resulted in improved paint adhesion and, therefore, prevented the formation of surface blistering with aging. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since Guided wave (GW) is sensitive to small damage and can propagate a relatively longer distance with relatively less attenuation, GW-based method has been found as an effective and efficient way to detect incipient damages. In this study, a full-scale concrete joint was constructed to further verify the effectiveness of GW-based method on real civil structures. GW tests were conducted in three stages, including baseline, serviceability and damage conditions. The waves are excited by one actuator and received by several sensors, which are made up of independent piezoelectric elements. Experimental results show that the mehod is promising for damage identification in practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the construction of fracture envelopes of DP780 sheets using two methods: a hybrid experimental-numerical method; two-dimensional digital image correlation (2D-DIC). For the hybrid method, four types of ductile fracture tests were carried out covering a wide range of stress states on specimens: with a central hole; two symmetric circular notches; flat grooved; and diagonally double-notched. Based on the fracture strain and loading paths identified with finite element simulation, a fracture envelope was obtained by employing the three-parameter modified Mohr-Coulomb fracture model. In addition, the fracture surface strain was directly measured using 2D-DIC. Loading histories of each test were extracted from a surface element of a three dimensional finite element model. The comparison of fracture envelopes constructed by the two methods reveals that there is little difference. Thus, it can be concluded that 2D-DIC is applicable to fracture modelling of DP780 sheets despite the assumption of the plane stress condition even after necking

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among many structural health monitoring (SHM) methods, guided wave (GW) based method has been found as an effective and efficient way to detect incipient damages. In comparison with other widely used SHM methods, it can propagate in a relatively long range and be sensitive to small damages. Proper use of this technique requires good knowledge of the effects of damage on the wave characteristics. This needs accurate and computationally efficient modeling of guide wave propagation in structures. A number of different numerical computational techniques have been developed for the analysis of wave propagation in a structure. Among them, Spectral Element Method (SEM) has been proposed as an efficient simulation technique. This paper will focus on the application of GW method and SEM in structural health monitoring. The GW experiments on several typical structures will be introduced first. Then, the modeling techniques by using SEM are discussed. © (2014) Trans Tech Publications, Switzerland.