21 resultados para organic field effect transistors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present study we expand our analysis of using two contrasting organic solvent additives (toluene and THF) in an ionic liquid (IL)/Li NTf 2 electrolyte. Multinuclear Pulsed-Field Gradient (PFG) NMR, spin-lattice (T1) relaxation times and conductivity measurements over a wide temperature range are discussed in terms of transport properties and structuring of the liquid. The conductivity of both additive samples is enhanced the most at low temperatures, with THF slightly more effective than toluene. Both the anion and lithium self-diffusivity are enhanced in the same order by the additives (THF > toluene) while that of the pyrrolidinium cation is marginally enhanced. 1H spin-lattice relaxation times indicate a reasonable degree of structuring and anisotropic motion within all of the samples and both 19F and 7Li highlight the effectiveness of THF at influencing the lithium coordination within these systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There are few reports of non-cryogenic preservation methods for marine invertebrates, so potable alcohol and acetone-based nail varnish remover (NVR) are for the first time evaluated against absolute ethanol as short-term preservatives of whole barnacles. Performance of ethanol and NVR-preserved material was comparable, but potable alcohol was significantly worse. These results are of practical importance for fieldwork in remote areas where laboratory chemicals are unattainable but potable alcohol or NVR are locally available. Of these, acetone-based NVR would be the solvent of preference.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the exploration of a synergic effect within n-type inorganic–p-type organic nanohybrids in gas sensors. One-dimensional (1D) n-type SnO2–p-type PPy composite nanofibers were prepared by combining the electrospinning and polymerization techniques, and taken as models to explore the synergic effect during the sensing measurement. Outstanding sensing performances, such as large responses and low detection limits (20 ppb for ammonia) were obtained. A plausible mechanism for the synergic effect was established by introducing p–n junction theory to the systems. Moreover, interfacial metal (Ag) nanoparticles were introduced into the n-type SnO2–p-type PPy nano-hybrids to further supplement and verify our theory. The generality of this mechanism was further verified using TiO2–PPy and TiO2–Au–PPy nano-hybrids. We believe that our results can construct a powerful platform to better understand the relationship between the microstructures and their gas sensing performances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A controlled artificial recharge experiment was conducted to investigate the effect of soil aquifer treatment during percolation of secondary and tertiary (ultrafiltered) treated wastewater through the shallow vadoze zone of a newly constructed coastal sandfill. The sandfill is a reclaimed land constructed from marine sand dredged from the seabed. To obtain 1-D flow, a stainless steel column was driven to a depth of 2.5 m, penetrating the phreatic surface. Wastewater was percolated through the column under fully-saturated and unsaturated conditions. Infiltration rates, dissolved organic carbon (DOC) and ultra-violet absorption (UVA) were monitored. The wastewaters were recharged at similar infiltration rates of approximately 5.5 m/day and 3.5 m/day under fully-saturated and unsaturated conditions, respectively. In both cases, clogging occurred 40 days after the start of recharge, under saturated conditions. For secondary treated wastewater, DOC concentration (mg/l) reduced by 28% and 13% under unsaturated and saturated conditions, respectively. The corresponding UVA reduction was 19.4% and 14.1%. Similar reductions in DOC were observed for the tertiary treated wastewater; however, the reduction in UVA was higher; 28% and 22% under unsaturated and saturated conditions, respectively. On an mass removal (mg/m(2) DOC) basis, DOC reduction appeared to be more significant under unsaturated conditions. This is attributed to the presence of interstitial oxygen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aims to evaluate the effectiveness of membrane filtration in removing natural organic matters (NOMs) from four different source waters and the subsequent effect that it has on total chlorine (TC) demand of these waters. Source water samples were filtered sequentially through membranes with molecular weight cut-off of 3,500, 1,000 and 200 Da as well as RO membrane. The source waters and sequentially filtered samples were dosed with chlorine and the residual chlorine data were used to estimate the TC demand of these waters. A robust chlorine decay model constructed in AQUASIM software was used to do so. More than 80% of the chlorine demand in untreated surface water sources was found to be contributed mainly by NOMs that were larger than 3,500 Da. However, for water treated by granular filtration, the chlorine demand was found to be contributed by NOMs which were down to 200 Da. Sequential filtration through all four membranes reduced chlorine demand by more than 94% in surface waters and 84% in waters treated by granular filtration. Significant reduction in the formation of trihalomethane can be achieved if water is treated by appropriate membranes after granular media filtration. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two-photon initiated photo-isomerization of an azobenzene moiety adsorbed on silver nanoparticles (Ag NPs) is demonstrated. The azobenzene is linked to a materials-binding peptide that brings it into intimate contact with the Ag NP surface, producing a dramatic enhancement of its two-photon absorbance. An integrated modeling approach, combining advanced conformational sampling with Quantum Mechanics/Capacitance Molecular Mechanics and response theory, shows that charge transfer and image charges in the Ag NP generate local fields that enhance two-photon absorption of the cis isomer, but not the trans isomer, of adsorbed molecules. Moreover, dramatic local field enhancement is expected near the localized surface plasmon resonance (LSPR) wavelength, and the LSPR band of the Ag NPs overlaps the azobenzene absorbance that triggers cis to trans switching. As a result, the Ag NPs enable two-photon initiated cis to trans isomerization, but not trans to cis isomerization. Confocal anti-Stokes fluorescence imaging shows that this effect is not due to local heating, while the quadratic dependence of switching rate on laser intensity is consistent with a two-photon process. Highly localized two-photon initiated switching could allow local manipulation near the focal point of a laser within a 3D nanoparticle assembly, which cannot be achieved using linear optical processes.