68 resultados para nanocrystalline GaAs1-xSbx


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data is derived from an investigation into the microstructural changes of nanostructure Al (produced by cryo-rolling) in response to cyclic loading using electron microscopy and EBSD. The aim is to develop a better understanding of the deformation mechanisms in ultrafine grained/nanostructure metals under cyclic loading conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study of the synthesis of hexagonal boron carbo-nitride (h-BCN) compounds via a two-step high-temperature and high-pressure (HTHP) technique using melamine (C 3N 6H 6) and boron oxide (B 2O 3) as raw materials is presented. An amorphous BCN precursor was prepared at 1000K under vacuum in a resistance furnace and then single-phase h-BCN nanocrystalline was synthesized at 1600K and 5.1GPa in a multi-anvil apparatus. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the final products were pure h-BCN crystals with the lattice constants a ≤ 0.2510nm and c ≤ 0.6690nm. The average grain size was about 150nm. X-ray photoelectron spectroscopy (XPS) results confirmed the occurrence of bonding between C-C, C-N, C-B and N-B atoms. Raman scattering analysis suggested that there were three strong Raman bands centered at 1359, 1596 and 1617cm -1, respectively. The band at 1617cm -1 was considered to be consistent with the characteristic Raman peak of h-BCN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of H2O2 in the preparation of nanocrystalline CeO2 has been investigated by treating solutions of Ce(III) with NaOH in the presence of different concentrations of H2O2. The resulting precipitated material was then examined by a range of techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). A decrease in CeO2 crystallite size with increasing H2O2 concentration was observed. This was found to be associated with the formation of an amorphous material containing an η2-peroxide (O22-) species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by _3 to 40 _C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further _3 to 10 _C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solidstate phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corrosion behaviour of nanocrystalline and microcrystalline Fe20Cr alloys, prepared by high energy ball milling followed by compaction and sintering, was studied in 0.05M H2SO4 and 0.05M H2SO4 + 0.5M NaCl by potentiodynamic polarization. The nanocrystalline alloy exhibited improved passivating ability and pitting resistance as described by passivation potential, critical current density, passive current density and breakdown potential. XPS and SIMS analysis revealed greater Cr content in the passive film formed on the nanocrystalline form of the alloy. The enhanced passivating ability of the nanocrystalline alloy was attributed to the formation of the passive film with higher Cr content.