72 resultados para model-based reasoning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this paper focuses on fitting of a neural mass model to EEG data. Neurophysiology inspired mathematical models were developed for simulating brain's electrical activity imaged through Electroencephalography (EEG) more than three decades ago. At the present well informative models which even describe the functional integration of cortical regions also exists. However, a very limited amount of work is reported in literature on the subject of model fitting to actual EEG data. Here, we present a Bayesian approach for parameter estimation of the EEG model via a marginalized Markov Chain Monte Carlo (MCMC) approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic variations in channel behavior is considered in transmission power control design for cellular radio systems. It is well known that power control increases system capacity, improves Quality of Service (QoS), and reduces multiuser interference. In this paper, an adaptive power control design based on the identification of the underlying pathloss dynamics of the fading channel is presented. Formulating power control decisions based on the measured received power levels allows modeling the fading channel pathloss dynamics in terms of a Hidden Markov Model (HMM). Applying the online HMM identification algorithm enables accurate estimation of the real pathloss ensuring efficient performance of the suggested power control scheme.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional Cellular Automation-based Physarum model reveals the process of amoebic self-organized movement and self-adaptive network formation based on bubble transportation. However, a bubble in the traditional Physarum model often transports within active zones and has little change to explore newareas.And the efficiency of evolution is very low because there is only one bubble in the system. This paper proposes an improved model, named as Improved Bubble Transportation Model (IBTM). Our model adds a time label for each grid of environment in order to drive bubbles to explore newareas, and deploysmultiple bubbles in order to improve the evolving efficiency of Physarum network.We first evaluate the morphological characteristics of IBTM with the real Physarum, and then compare the evolving time between the traditional model and IBTM. The results show that IBTM can obtain higher efficiency and stability in the process of forming an adaptive network.

Relevância:

100.00% 100.00%

Publicador: